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Subvarieties of Linear Tori and the Unit Equation

A Survey
ENRICO BOMBIERI

0. Introduction Let K be a number field. A classical and important prob-
lem is that of determining the units u of K such that 1 —u is also a unit. More
generally, let T be a finitely generated subgroup of (K*)2. The unit equation
in [ is the equation

z+y=1

to be solved with (z,y) € I'. A basic result, going back to Siegel, Mahler and
Lang, asserts that this equation has only finitely many solutions. Moreover, a
fundamental result of Baker provides us with effective bounds for their height.

One may also consider a linear torus G over a number field K, a finitely
generated subgroup I' of G(K) and study the set CNI', where C is an irreducible
algebraic curve in G. Lang [8, Ch.8, Th.3.2] proved that if C NT is an infinite
set then C is a translation of a subtorus of G, and conjectured that the same
conclusion holds if we replace I' by its division group, that is the group I
consisting of all points y € G such that y™ € I for some n (we use multiplicative
notation in G). This conjecture of Lang was later proved by Liardet [8, Ch.8,
Th.7.4]. Similar statements can be made for G a commutative algebraic group
with no G, components (that is, a semiabelian variety) and replacing C by a
subvariety X of G, but they are far more difficult to prove; indeed, even the
simplest case of a curve in an abelian variety turns out to be equivalent to
Mordell’s Conjecture.

In this lecture, we shall report on some recent results on the distribution of
small algebraic points on subvarieties of G%, and their application to the study
of the unit equation in groups of finite rank. The exposition in section §2 is a
simplification of a method of Y. Bilu and the proof of Theorem 3 follows closely
the proof of F. Beukers and H.P. Schlickewei. _

We shall not comment here about results for the case of abelian varieties
similar to those in sections §1 and §2; instead, we refer the interested reader to
the papers [14], [15], [16], and [13] listed in the bibliography.

1. Zhang’s Theorem In 1992 S. Zhang [14] obtained a surprising result on
the height of algebraic points on curves in GJ,,. He showed that for any curve
C C G}, there is a positive lower bound for the height of non-torsion algebraic

points in C(Q). This was new even in the simplest case of the unit equation
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z+y = 1. Later, Zhang [15] extended this to general subvarieties of G?,. As we
shall see, there are interesting applications to the problem of obtaining good
upper bounds for the number of solutions of the generalized unit equation.

We identify G,, with the affine line punctured at the origin, together with
the usual multiplication. The standard height on GV, is

o~

W(Pi,...,Pa) =Y h(P)
i=1

with h the absolute Weil height on P'.
The height h has the following properties:

(i) Homogeneity and symmetry: E(Pm) = |m]| E(P) for m € Z.
(ii) Non-degeneracy: h(P) = 0 if and only if P is a torsion point of G.
(iii) Triangle inequality: A(PQ~!) < h(P) + h(Q). .
(iv) Finiteness: There are only finitely many points in G, (Q) of bounded
degree and bounded height.

These properties are clear from the corresponding properties of the Weil
height, with (iv) following from Northcott’s Theorem {8, Ch.3, Th.2.6]. Thus

we see that E(PQ"I) defines a translation invariant semidistance d(P, @) on
G} (Q) and actually a translation invariant distance on GZ,(Q)/tors.

By a subtorus H of G}, we mean a geometrically irreducible closed algebraic
subgroup; H is non-trivial if dim(H) > 1. A torsion coset ¢H is a translation
of H by a torsion point € of GI,. We have:

Zhang’s Theorem Let X/K be a closed subvariety of G, defined over a
number field K and let X* be the complement in X of the union of all torsion
cosets eH C X. Then:

(a) The number of mazimal torsion cosets eH C X is finite.
(b) The height of points P € X*(K) has a positive lower bound.
The results (a), (b) above are effective.

The following uniform version of Zhang’s Theorem is due to E. Bombieri
and U. Zannier (3].

Theorem 1 Let h be the standard height on G,(Q) and letd(P,Q) = ’ﬁ(PQ‘l)
be the associated semidistance.

Let X/K be a closed subvariety of G?, defined over a number field K by
polynomial equations of degree at most d and let X° be the complement in X
of the union of all cosets gH C X with non-trivial H. Then:

(a) X° is Zariski open in X. Moreover, the number and degrees of the
irreducible components of X — X° are bounded in terms of d and n.



Subvarieties of Linear Tori and the Unit Equation 3

(b) There are a positive constant y(d,n) and a positive integer N(d,n), de-
pending only on d and n, with the following property. Let Q € G (K). Then

{P: Pe X°(K), d(P,Q)<~(d,n)}

is a finite set of cardinality ot most N(d,n). Moreover, for every point P in
this set we have [K(P,Q) : K(Q)] < N(d,n).

Remark The K-irreducible components of X — X° have a special structure.
Let Z be a K-irreducible component of X — X°.

Then we can find an isomorphism ¢ : GY, == G}, given by a monomial
change of coordinates of degree bounded in terms of d and n, such that (Z) =
GE, x Y, where k > 1 and Y is defined by polynomial equations of degree
effectively bounded in terms of d and n and height not exceeding the height of
the polynomial equations used to define X. By Northcott’s Theorem, Y can
be effectively determined.

The constants y(d,n) and N(d,n) are effective and the finite set of points
in (b) can be effectively determined for every Q € G%,(K).

The inductive proof in [3] yields extraordinarily small values for y(d,n).
W.M. Schmidt [9] introduced new ideas and obtained explicit good values for
v(d,n) and N(d,n).

Remark There is no uniform version of Zhang’s Theorem. For example, if a,
b are not roots of unity the equation 1+ az + by = 0 in G2, has a non-torsion
solution ¢ = (a™1p,b~1p?) with p a primitive cubic root of unity. We have
h(¢) = h(a) + h(b) > 0, and we can make it arbitrarily small by choosing a and
b.

Lemma 1 Let f(z1,...,2,) be a polynomial with integer coefficients, with
degree at most d and height H(f) and let p > e(d"'”)H (f) be a prime num-

n

ber. Let § = (fl,...,fe\) be an algebraic point with f(€1,...,&,) = 0 and
f(&7s-- -, &R) # 0. Then h(€) = 1/(pd).

Proof We repeat the proof in [3]. We may assume that the coefficients of f
have no common divisor greater than 1. Let K be a number field containing
all coordinates &;.

By Fermat’s Little Theorem we have

2@y z,) = flaf, . 22 + pglzy, .-, 2,),

where g(z4,...,%,) € Z{z,,...,,] has degree at most pd. Since by hypothesis
f&qs-.,€,) =0, we get

FEL 80 = —pgléys- - 8n)- (1)
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For any ¢ € K* the product formula yields

> logi¢l, =0.

vEMK

We apply this with ¢ = f(&7,...,£P) and estimate terms as follows.
If v|p we have by (1) and the fact that g has integer coefficients:

n
log [¢ly = log|pg(&y,- .-, €,)l, < loglpl, +pd > _log* |g], + log | flv,

=1

because log|f|, = 0 (the coefficients of f have no non-trivial common divisor
and v is finite).

For the other v’s we have, with €, = 0 if v is finite, and ¢, = [K,, : Q,]/[K :
Q) if v is infinite:

n
d+n
g dl, = log €], €0)l, <43 log" e, + gy + ey bog (7).

i=1

because the number of monomials in f does not exceed diny

Summing over all v € Mg and using Evlp log |p|ly = — log p we infer

0= Y logldl, < ~logp+pdh©) + (1) +1og (* "),

vEMg

which ends the proof.

Corollary (W.M. Schmidt) Let f(x) be as in Lemma 1 and let m be a positive
integer all of whose prime factors are greater than e(*}™)H(f). Suppose f(€) =

0. Then either f(€™) =0 or h(€) > 1/(md).

Proof The easy proof is by induction on the number of prime factor of m,
writing m = pm’. If f(€™') # 0 we apply the corollary inductively with m’ in
place of m. If instead f ({m/) = 0 we apply Lemma 1 to the point {m' in place
of £ and note that E({m/) = m’ﬁ({).

Proof of Zhang’s Theorem

Step 1: By taking the union of X with all its conjugates over Q, one needs
only consider the case in which X is defined over Q.

Step 2: By applying an isomorphism G}, =5 G, followed by a projection
G?, — GF, we may assume that X is a hypersurface, defined by a polynomial
f(x) of degree d, with integer coefficients.
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Step 3 (W.M. Schmidt): Let g be the product of all primes p < e(*t™) H(f)
and apply the Corollary to Lemma 1 with m = ¢qj+1, for j = 0,1,..., (d:;”) 1.

If £(£79+1) # 0 for some j, we obtain a lower bound for h(§).
If instead f(£%9*!) = 0 for all such j, we get

Zam(gm)Qj+1 =0,

with f(x) =Y amx™.

We view this as a homogeneous linear system with coefficients (€™)% and
unknowns am&™, so that its determinant must be 0. This is a Vandermonde
determinant, and looking at its factorization we see that

gom — g

for some m # m’. Now xI™ = x9" is a finite union of torsion cosets of
codimension 1 and none of them is contained in X* by hypothesis. Thus the
intersection Z of X with the coset containing £ has codimension 2, and we may
apply induction on n, replacing X by Z and going to step 2. This ends the
proof.

Sketch of proof of Theorem 1

Step 1: Statement (a) follows fairly easily from the fact that G, has only
finitely many subtori of given degree.

Step 2: The proof of (b} is by induction on n.

We may assume that Q is the origin of G, so that d(P, Q) = E(P).

Let X/K be an irreducible subvariety of G, of degree d; then X can be
defined by polynomials f;(x) € K|[x] of degree at most d. Let M denote the
set of all monomials x™ of degree at most d, of cardinality r = (dZ").

Consider the r x r matrix

m
X3
xm
Xy = 2
m
Xr meM
where x3,...,X, are points of X. Its determinant is 0, because any equation

fi(x;) = 0 yields a linear relation among the columns of the matrix. This
means that det(X) vanishes on X",

Now we apply Zhang’s Theorem to the variety Xy C (G%,)" defined by
det(Xrq) = 0. By (a), the maximal torsion cosets ¢H in X4 are finite in
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number. For such a coset, H will be properly contained in (G})", so there
exists some factor
Go=ex + x(Gp)"x---xe (2)

(G )™ is the v-th factor

not contained in H. Define H' as the subtorus of G, determined by the
obvious projection of G, N H on G%,. Since n’ = dim(H') < n and H' =&
G™, the induction assumption applies to (9X) N H’ ¢ H' with any g € Gn.

Thus applying inductively Theorem 1 (which is trivial if n = 1) we obtain
that there are 4’ and an integer N’ (depending only on d and n) such that if £
is an algebraic point on (¢9X) N H' then:

(i) either h(£) > 7/,
or

(i1) € belongs to some coset of positive dimension contained in (gX) N H',
or

(i11) £ belongs to a finite set of at most N’ elements.

Clearly we may suppose that the same 4’ and N’ work for the finitely many
H' involved here. Let ¢ be their number, let N = tN’+1 and take any r-tuple
formed from any given N distinct points & € X°(Q). If some such r-tuple
does not lie in any of the finitely many relevant torsion cosets of H contained
in X4, then Zhang’s Theorem applies to X4 and we are done.

Otherwise, each r-tuple corresponds to some torsion coset of H and thus to
some H’, as described before. Now at least (N”)"/t distinct r-tuples will lie in
a same torsion coset of H'. Let G, be the factor as in (2) not contained in H,
and let us associate to each such r-tuple the (r —1)-tuple obtained by projection
on the r — 1 trivial factors of G,,. The number of (r — 1)-tuples is (N”)"~1, so
at least | > N/t > N’ of the r-tuples will have the same components save for
the v-th component. Therefore, dividing any such r-tuple by a fixed one we
obtain, after renumbering, that

&t e H for i=1,...,L

It follows that &£ € (671 X) N H' for all i = 1,...,l and (setting g = £&71)
we may apply one of (i), (ii), (iii) to the points &;¢7".

Since [ > N’, alternative (iii) cannot occur. Also, alternative (ii) gives that
&7 ! belongs to some coset of positive dimension contained in & 1X, which is
excluded because &; € X°. Thus only alternative (i) remains and

R(&:) + h(&r) > h(g£T) > 7.

Hence out of any tN’ + 1 distinct points in X°(Q) one of them has height
bounded below by «'/2.
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The last statement of (b) is clear, because conjugation over K does not
change height. This ends the proof.

2. The equidistribution theorem Another approach is due to L. Szpiro,
E. Ullmo and S. Zhang [13] and Y. Bilu [1]. The idea, due to S. Zhang [16], is
that points of small height under the action of Galois conjugation tend to be
equidistributed with respect to a suitable measure.

For a € C* let §, be the usual Dirac measure at a and for £ € K let

bo
g, 2

be the probability measure supported at all complex conjugates of £, with equal
mass at each point.

Theorem 2 (Y. Bilu) Let {&;} be an infinite sequence of distinct non-zero
algebraic numbers such that h(¢§;) — 0 as i — co. Then the sequence 6,
converges in the weak* topology to the uniform probability measure ur on the
unit circle T in C*.

Proof Let pu be a weak* limit of the measures &¢,. Let ag; and d; be the
leading coefficient and degree of a minimal equation for &;. Since the &; are
distinct, Northcott’s Theorem shows that d; — oo.

By hypothesis,

he) =+ log|a01|+ iZlog* lo&| — 0 (3)

as ¢ — oo; this implies log |ag;| = o(d;) and that p is still a probability measure.
By weak* convergence we have

1
_E ) logt ol — log* |z|d
d; & f(o&:)log™ |o&il /cf(z) og™ |z|du(2)

for any continuous function f(z) with compact support in C. Thus (3) shows
that

/ £(2)log* |zldp(z) =
C

and p must be supported in the unit disk |2| < 1. Using the fact that h(1/§;) =
h{¢;) — 0, we deduce in similar fashion that u is supported in {z| > 1. Hence
any limit measure u has support in the unit circle T.

Let D; be the discriminant of a minimal equation for &;. By writing D;
as the product of azd =2 and the square of a Vandermonde determinant and
estimating the determmant using Hadamard’s inequality, we have

1
R log |D;| < logd; + (2d; — 2)h(&;),
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whence

0 < log|Di| = (2d; — 2) loglai| + D _ loglo& — o'l = o(d?).  (4)
o#o’

By (4) we easily deduce that u is a continuous measure and, taking a weak*
limit, we get

/ log du(Z) du(¢) = 0.

Either directly by symmetrlzatlon, or by appealing to well-known results of
potential theory (see, e.g., (7], Exercise 16.2.2, Th.16.4.3 and Th.16.4.5), we
see that this holds only if p(2) is the uniform measure on T, completing the
proof.

Another way of concluding the proof, which in its discrete version is Bilu’s
argument, consists in noting that the integral in question is the inner product
(u* ', —log|l — e®]) with y/ the composition of y with complex conjugation
z +— Z. The n-th Fourier coefficient of —log |1 — €%| is 0 if n = 0 and 1/(2|n|)
if n # 0 (expand in Taylor series), so the integral is

QIS
27

Equality holds only if fi(n) = 0 for n # 0, or in other words only if p is the
uniform measure on T.

Second proof of Zhang’s Theorem

‘We proceed by induction on n. The result is trivial if n = 1, because height
0 characterises roots of unity (Kronecker’s Theorem).

We may assume that X is defined over Q. Suppose we have an infinite
sequence of distinct points & € X* with h(£;) — 0. Since X is defined over
Q, we may assume that the set of points in this sequence is stable by Galois
conjugation in Q. For any non-trivial character x(x) = z* --- 2z of (C*)*
consider the sequence {x(¢&;)}. Clearly, h(x(&;)) < (max |mj])ﬁ(§,~) — 0.

Case 1: All sequences {x(&;)} ultimately consist of distinct elements. In this
case, Theorem 2 shows that {x(&;)} determines the uniform measure on x(T™).
Since this holds for any non-trivial x, the closure of {£;} in (C*)™ contains T".
Hence T* C X(C), a contradiction because X is a proper algebraic subvariety
of G..

Case 2: There is a non-trivial character x such that the sequence {x(&:)}
has an element ey occurring infinitely many times. Since h{x(&;)) — 0, we
have h(ep) = 0 and therefore ¢ is a root of unity by Kronecker’s Theorem. If
we replace X by e~ X where ¢ is a torsion point such that x(¢) = ¢ and note
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that (¢71X)* = ¢~ }(X*), we may assume that ¢ = 1 and, possibly by taking
an infinite subsequence of {£;}, we may also assume that {¢;} is contained in
the connected component of the identity of the kernel of x, say H. Now H is
a proper subtorus of G}, and we may replace X, G}, by X N H, H and then
use induction.

Remark As such, this proof does not lead to an effective form of Zhang’s
Theorem.

Remark The following immediate consequence of Theorem 2 is worth noting.
If £ # 0 is algebraic not a root of unity and has at least  deg(£) real conjugates,
then h(¢) > c(n) > 0 with ¢(n) independent of £. In particular, totally real
algebraic numbers other than +1 have height bounded below by an absolute
positive constant.

Examples of totally real £ with small height can be obtained by noticing
that if £ is totally real then n — n~! = ¢ yields a totally real n of degree not
exceeding 2deg(¢). C.J. Smyth [11], using a result of Schinzel [10], obtained
the sharp lower bound }log((1 + v/5)/2) % 0.2406059 for h(£), attained for
¢ = (14 v/5)/2. He also showed that values of h(¢) for totally real ¢ are dense
in a half-line (), 0o}, with A & 0.2732831. Here A\ = lim h(£,) where £, = 1 and
bny1 —Ent1 = bn.

The minimum above is isolated, and subsequently Smyth [12] determined
the first four smallest values of h(€) for totally real €.

3. The number of solutions of the unit equation We have the following
nice result of F. Beukers and H.P. Schlickewei [1].

Theorem 3 There are absolute computable constants Cy, Cy with the follow-
ing property.

Let T be a subgroup of (Q)? with rankg(I') = r < o0, where rankg(T") is
the mazimum number of multiplicatively independent elements in I'. Then the
equation

r+y=1, (z,y) eT

has at most C1 x C§ solutions.

This result improves bounds Cc™ and (Cr)" previously obtained by Schlick-
ewei and Schmidt. Beukers and Schlickewei have shown that one may take
C1 = Cz = 256 in Theorem 3, and K.K. Choi (unpublished) has refined their
result to C; = 241, C, = 70.

It is an interesting problem to determine the maximum number of solutions
of the equation z +y = 1 with (z,y) in a group T of rank r. In this connection,
we may remark the following. If we take cosets of (I'/tors)* in I'/tors, we are
led to finding rational points in K on curves az* + by* = 1, which have genus
3. It is widely conjectured [4] that the number of rational points in K on a
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curve of genus g > 2 is bounded solely in terms of K and g therefore, since we
have 4" cosets, this argument suggests that Cy < 4.

Example 1 The following simple argument, due to D. Zagier, yields an ex-
ample of a subgroup of Q* with a large number of solutions. It simplifies a
more precise calculation due to P. Erdos, C.L. Stewart and R. Tijdeman [6].

Let N > 2 be a positive integer. Let M be the number of integers up to x
whose prime factors do not exceed z/V. It is clear that

1r(:L‘1/N)N

M2z—

Since m(y) > y/logy for y > 17 and N! < $ N we see that M > 2z/(log z)N
if z > 17N, Consider the M? sums n’ + n where n/, n have only prime factors
not exceeding 2'/V. Since n’ 4 n < 2z one sum must occur at least M?/(2z) >
z/(logz)?" times. In other words, there is an integer b such that the equation
n' +n = b has at least z/(log z)?" solutions.

It follows that if " is the subgroup of (Q*)? generated on each factor by all
primes up to z1/Y and by b then the unit equation in I has at least x/(log )2V
solutions, provided z > 17V. This group I has rank r equal to either 27 (z'/")
or 2m(xz/N) + 1, hence r ~ 2Nxz/N /logz as z'/N tend to co. If we make the
asymptotically optimal choice

_[ log _ log ]
" L2loglogz  2(loglog x)?

then we verify that the number of solutions is at least

L = (Ag+o(1))\/lo;r
(logz)2N ‘

Example 2 Consider the equation az™ +by™ = 1 for varying m, correspond-
ing to a group I' = (z,y)% of rank 1. We want to find a, b, z, y such that it
has the maximum number of solutions for m € Z. We may assume that m = 0
is a solution. Suppose that m = 1 is also a solution, so the equation becomes
(y—1z™+ (1 —z2)y™ — (y —z) = 0. If we fix two other solutions, say m;
and mg, we can eliminate y and obtain an equation for . Taking m; =2 or 3
always leads to roots of unity for x and y. However, taking m; =4 and ms =6
gives the equation 28 + z° + 22* + 323 4+ 222 + £ + 1 = 0. For any root ¢ of
this equation we see that taking n = —1/(1 + £ + £3), which is another root of
the same equation, we have

-1, 1
+
n—€§ n-—
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for the six values m =0, 1, 4, 6, 13, 52.

Example 3 The following example gives an equation u +v = 1 with at least
2532 solutions u, v € I, and rank(I') = 5. Let K = Q(a) with « the real root
a > 1 of the Lehmer equation

20429 " -8 -t -t +1=0.

This equation has another real root 1/a and 8 complex roots all of absolute
value 1; we shall refer to the map a — 1/o as real conjugation in Q(a).
The Mahler height of a is M(a) = a = 1.176280818259917% and is widely
conjectured to be the infimum of the Mahler height of an algebraic number not
a root of unity — the so-called Lehmer Conjecture. The group I" of units of K
hasrank 5: ' = {#1}x <o, 1-a, 1+, 1 +a+a?, 1 +a—a > Now
an extensive computer search for solutions of the corresponding unit equation
produced a remarkable total of 2532 solutions.

The following is a plot of the 2532 points (log |ul, log |u'|) where u is a real
unit and u’ is the real conjugate of u.

15

101

-15 L A " L \
-15 -10 -5 0 5 10 15

Example 4 The following remark is due to H-W. Lenstra. For a prime p,
consider the cyclotomic field Q({/1) and the corresponding unit equation. If
# +v =1 and u, v are not real then & + 7 = 1 is another solution of the unit
equation. By Kronecker’s Theorem, ¢ = %/u and €’ = T/v are roots of unity in
Q(R/1). Solving the system u+v =1, eu+e'v =1 we get u = (¢' —1)/(¢' —¢),
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v = (1—¢)/(e' — ). Conversely, given distinct roots of unity ¢, ' in Q({/1),
not equal to 1, we obtain a solution u, v of the unit equation. Thus the number
of complex solutions of the unit equation in Q({/1) is (p — 1)(p — 2).

Example 5 The number of solutions in the maximal real subfield K, of

Q(4%/1) is much larger. A computer search using cyclotomic units produced 3
solutions in Kj, 42 solutions in K7, 570 solutions in K4y, 1830 solutions in K3,
11700 solutions in K7 and 28398 solutions in Kig.

The proof of Theorem 3 is obtained by means of a Padé approximation
method which originates in the work of Thue, Siegel and Baker. We need a
basic result.

Theorem 4 Let n be a positive integer. Then we can find a non-zero poly-
nomial M, (z) of degree n with positive integral coefficients without common
divisor such that

oM, (1 - ) + (1)1 — 2)* I M, (z) — 2" M, (1 - 1/z) = 0.

The polynomial My () is unique and we have Mn(1) < (31)".
Moreover, any linear combination

oz M, (1 — z) + B(1 — )M, (z) + v2" M, (1 — 1/z)

is either identically 0 or has only simple roots outside 0, 1, and occ.

Proof We have the following transformation of a hypergeometric integral:
1
/ 2z - )"z —2)"dx
0

1/z
- /0 (20)" (2w — 1) (29 — 2)" d(z)

1 1/z
= Zntl (/0 +/1 )y"(l—y)”(1~zy)”dy
1
— .2n+1 1 — )1 — 2)"
=z /Oy(l y)" (L —zy)" dy
1
+(—1)"(1—z)2n+1/ u™(1 = u)*(1 —u+ zu)"du
0

as one sees using the change of variable zy = 1 — (1 — z)u in the integral from
1 to 1/z. Thus we obtain three polynomial A(z), B(z), C(z) of degree n such
that

A(z) + (1 — 2)7FIB(2) + 22"*1C(2) = 0.
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In terms of hypergeometric functions, we have

(2n+1)! _n ) )
T A(z) = —2"F(n+1,—n;2n+ 2;1/2),

2 !

(—%ﬁ) B(z) =(-1)"F(n+1,—-n;2n + 2;1 — z),
(2n+1)! _ ' '

i C(z)=F(n+1,~n;2n+2;2),

and the above linear relation is one of the 20 three-term linear relations for
hypergeometric series found by Kummer [5, I, (29), p. 106].

Rather than pursuing the hypergeometric function connection here, we pro-
ceed geometrically to obtain uniqueness. Consider the rational function

z2n 1 P
ols) = - )

and the associated covering ¢ : P! — P!. The rational function ¢ has degree
3n + 1, fixes {0,1,00} and is ramified of order at least 2n at {0,1,00}. By
Hurwitz’s genus formula we have

—2=-23n+1)+2n+2n+2n+6

where 6 is the sum of the orders of ramification of ¢ at all points outside
{0,1, 00}, plus the order of ramification in excess of 2n at {0,1,00}. Hence
6 = 0 and ¢ is unramified outside {0,1,00}. This proves uniqueness, because
if p1/q1 and pa/q2 were two distinct such functions then (p; + pp2)/(q1 + pg2)
would be a one-parameter family with the same properties and we could impose
additional ramification by choosing p, a contradiction.

By uniqueness, we deduce that (A(z), B(z),C(z2)), (A1 ~2),C(1-2), B(1—
2)) and (2"C(1/z), —2"B(1/z),2"A(1/z)) are proportional by a factor £1. It
follows that A(2) = (~1)"*12"B(1 — 1/2) and C(z) = (-1)"B(1 — z) and
M, (2) is proportional to

1
B(z) =/0 u™(1—u)*(1 —u+ 2u)"du

-3 () ([ s ) o

m=0

“mrr o )/ (o)}

m=0

In order to bound M, (1), it suffices to remark that

GGG/ (3 = S = () (2™)
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is an integer. Thus

M, (z) = D! zn: (” J;m) (2";"’) 2,

m=0

where D is the greatest common divisor of the integers ("*™)(**.™). Finally

n n
n+m\(2n—-m 3n+1 27
DM,(1) = = <=1 .
=2 (7)) = () =(3)
The last statement of the theorem is equivalent with ¢(z) being unramified
outside {0,1, co}.

Remark One can show that

27

™
6

23

Now we return to the proof of Theorem 3, following Beukers and Schlickewei.
Let h((zo : 1 : 2)) be the height on the projective plane P2.

1 1
~ log(Ma(1)) ~ == + 5 log(

Lemma 2 Suppose that ax +by =1 and a’c+b'y = 1 with A = ab’' —a’b # 0.
Then we have

h(1:z:y)) <log2+h((1:a:b))+h((1:a :¥)).

Proof By Cramer’s rule, z = (b’ — b)/{ab' — a'b) and y = (a — a')/(ab’ — a’b).
Hence

h((1:z:y)) =h((at/ —a’b:b —b:a—d))
= Z max(log |’ — b|,,log|a — a'],,log |ab’ — a'b],)

<log2+ Z max(log |al,, log |bl,,0) + Zmax(log la’|,, log '], 0)
v v
=log2+h((1:a:b))+h((1:a b)),

proving what we want.

Let us write x = (z,y) and h(x) = A((1 :  : y)). The following corollary of
Lemma 2 will be useful.

Corollary Suppose that x1 +y1 = 1 and 23 + yo = 1 with z1,y1,Z2,y2 # 0.
Then

h(x;) < log 2 + h(x,x7 ).
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Proof Apply Lemma 2 with (z,y) = (z1,m1), a = b =1, d = zo/x;, ¥ =
Y2/y1-

The next lemma is the key to the proof.

Lemma 3 Suppose that t1 +y; = 1 and x2 +y2 = 1 with x1,y1,T2,y2 # 0
and let n > 2 be an integer. Then

h(xy) < log(42) + —— h(xx>").

Proof We set z = z1 in the identity provided by Theorem 4, obtaining
Mn(y1)x§n+l + (=1)"Mp(z,) y%nH = 2T Mn(-y,/2,)
We also have z3 4+ y» = 1, hence setting
a=1z,/23", b=y y",

o' = x1 My (y1)/ (27 Mn(—v1/71)), b = (—=1)"y; Mn(z,) /(2T Mn(~y1/21)),

we have az?" + by?" = 1 and a'z3" + b’y = 1.
Suppose first that ab’ — a’b # 0. Lemma 2 gives

2nh(x;) = h(x3") <log2 + h((1:a: b)) + h((1:a’: b)).
Now A((1 : a: b)) = h(x,x72") and

h((1:a’:b")) = h((2T Mn(=y1/21) : T Ma(y1) 1 (=1)" 41 Mn(21)))
:Zmax(logh:’f n(=Y1/Z1)|ys log |21 M (y1) |, 1og |yy Mn(z4)],)

<log|Ma|p: + (n+ 1) h(xy).
Therefore, using the estimate of the norm of M, given in Theorem 4, we get
3 1
2nh(x;) <log2 + log < n:— > + h(xx72™) + (n + 1) h(xy);
the result follows from

log2 + log (3”’: 1) < (n— 1) log(42).
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Now suppose that ab’ — a’b = 0. This is the same as saying that
F(2) = Ma(1 = 2) 22" — (22/y2)(=1)"Mn(2) (1 — 2)>**+

vanishes at z = x;. By the last statement of Theorem 4, we see that z = z; is
a simple zero of f(z) and therefore its derivative does not vanish there. Now
we differentiate the identity provided by Theorem 4 and set z = x;. With
Un(2) = 2n + )M, (2) — (1 = 2)M)(2), Vo (2) = nM,(2) + (1 — 2)M] (2), we
obtain

Un(y1)z3" + (_1)n+1Un($1)y%n = x?_lvn(_yl/xl)-

This time we take

a" = Un(y) /(27" WVal=tn/21)), 8" = (1) Un(z1)/ (27" Val-y1/21))

and apply Lemma 2 to az?® + by?" = 1 and a”z?" + b"y?" = 1. Note that
ab” — a’b # 0, since otherwise f’(z) would vanish at z = ;. Lemma 3 now
follows in very much the same way as before.

Let ' be a finitely generated subgroup of (@*)2 of rank r. By picking
generators of ' we identify I'/tors with Z". Let Z be the set of solutions of
z+y =1inT and let Zy be its image in Z" under the projection I' — Z".
We claim that

1Z] < 2|20}

Indeed, elements of Z with same image in 2y can be written as (ae, b¢) with
a, b fixed and € and ¢ roots of unity such that ac + 6 = 1. This equation
gives us a triangle in the complex plane with vertices at 0, ac and 1 and sides
of length 1, |a|, |b]. There are at most two such triangles (intersect a circle of
radius |a| and center 0 and a circle of radius }b| and center 1), showing that the
projection of Z onto Zy is at most two-to-one.

We define a distance function || || on R" as follows. Let x = (z,y) € T be
any representative of u € Z" = I' /tors, and set

lull = h(x) = h(z) + h(y);

this is well defined because changing x or y by a root of unity does not change
their height. Next, we extend this to Q" by setting ||Au|| = |A| - §ju]|, which
is consistent with the definition of || ||, because h(z*) = |\| - h(z) for A € Q.
Finally, we extend this to R" by continuity.
The triangle inequality ||u + v|| < |||l + ||v|| is clear. It follows that the
region
B, ={ueR":|u| <t}
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is a closed, convex, symmetric set. It is also bounded, otherwise Minkowski’s
theorem would give infinitely manyAlattice points in Ct, and hence infinitely
many elements x = (z,y) € I' with h(x) = h(z) + h(y) < t. Since I is finitely
generated, this would contradict Northcott’s Theorem. Hence || || is a distance
function and B; is the associated ball of radius t.

It is clear that
3 h(x) < max(h(z), h(y)) < h((1: 2 : y)) < h(x).
In view of this inequality, Lemma 3 shows that if u and v are in Z; then for
any integer n > 2 we have
2
llull < 2 log(42) + — Iv — 2nu|. (5)
In the same way, the Corollary to Lemma 2 shows that
flull <logd+2|lv—ul. (6)

For a vector u € R” let v(u) = u/||ul| be the associated unit vector with
respect to the distance function || ||. Suppose that the vectors v(u) and v(v)
are nearly the same, so that u and v point about in the same direction. If ||v||
is much larger than ||ul|, then we can find an integer n such that ||v — 2nu|| is
small compared with = ||u||, and now (5) can be used to get an upper bound
for [lul.

The details are as follows. Let € > 0 be a small positive constant and let
u, v € Zy be two points with

lv(v) -v(w)l <&, vl = 4luf.

Let n = [||v]|/(2]lu]))], so that n > 2 and 0 < ||v|| — 2n ||u|| < 2||u||. Then (5)
gives

2
|| < 2 log(42) + —— v —2nu|
2
=2 log(42) + — [ vl - v(v) = 2n [lu] - v(u)

<2 log(42) + —= (vl = 2 ul) + = - [(v) — w(w)]

4+ 4ne
n—1

<2 log(42) + [[ull -

We take € = 75 and note that (4 + 4ne)/(n — 1) < 1 if n > 45. In this

case the above chain of inequalities yields ||u| < 2log(42) + 1 ||u|| and |ju| <
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4 log(42) < 15. If instead n < 45, we note that ||v|| — 2n |lu|| < 2||u]|, hence
lv]] <90]lu|l. We have shown:

Lemma 4 Let u,v € Zy and suppose that |v(v) — v(u)| < & and 15 <
[ull <Ivll. Then
[ull < [lv]l < 90]lull.

Let us call a solution x of z +y = 1 in T large if Tz(x) = h(z) + h(y) > 15
and -small otherwise.

The counting of large solutions is done in two steps, first by providing an
upper bound for the number of points u € 2y such that H < |ju|| < AH lying
in a fixed cone

Cle;a) ={weR": |ly(w) —a| <e}
and then by covering all of R” by means of finitely many cones C(g; a;).

For the first step we use (6). Suppose we have two points u, v € ZyNC(e; a)

with
15 < luf| < vl < (1 +6)[jul.

Then (6) gives

[ull <log4+2fv —u]
=logd + 2| [[v]l - v(v) = lul| - v(u)|
<logd+2([[vll = [lull) +2ful - w(v) - v(u)|
<logd + (26 + 4¢) |uj .

If we take for example § = } and € = 75 we obtain ||uf| < 10log4 < 14,
contradicting the assumption |lul| > 15. Thus we have a gap principle:

vl > % llull.

Suppose we have m large solutions in a cone C(45 ; @), say u; e ZoNC (55 ;a)
with 15 < Jluill < |lug|l € .... Then |v(u,) — v(wy)| < 55, therefore by
Lemma 4 we have ||u,| < 90]jui||. On the other hand, the preceding gap
principle shows that |u,,|| > ($)™~1 |luy||. Hence m —1 < log(90)/ log(5/4) <
21 and, by a preceding remark, we cannot have more than 42 large solutions
with image in any given cone 0(516 ;a).

We can cover the unit sphere ||w|| = 1 with not more than (1 + 2/¢)"
translates of the ball B,, with centers on the unit sphere. Indeed, consider
a maximal set of non-overlapping balls of radius £/2 with centers on the unit
sphere. Since they are contained in a ball of radius 1+¢/2 and they are disjoint,
their number does not exceed (1+2/¢)”. On the other hand, maximality shows
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that doubling the radius we obtain a covering of the unit sphere. Taking ¢ = 2—10 ,

we infer that we can cover all of R" with not more than 41" cones C’(2—10 ;a).
We have already shown that any such cone determines at most 42 large

solutions and we conclude that the total number of large solutions does not

exceed 42 x 417.

It remains to give a bound for the number of small solutions, and this is a
consequence of the uniform version of Zhang’s Theorem, namely Theorem 1.
We apply this theorem with d = 1 and n = 2, and deduce that there are two
constants v = (1,2} > 0 and N = N(1,2) < oo such that, for any a, b € Q,
we have at most N solutions x = (z,y) € (Q )2 of

ar +by =1, ﬁ(x) <.

Let I be the division group of I'. By the same argument given before, we
can cover the ball B; with not more than (1 + 2¢/v)" translates of the ball
B,, and we may assume that these translates are centered at rational points.
This means that we can find-points (a;,b;) € I, numbering not more than
(1+2t/v)", such that every x = (z,y) € T with z+y = 1 and h(x) < ¢ can be
written, for some ¢, as z = a;&, y = byn with ;£ +b;n7 =1 and h(§) + h(n) < 7.
Since there are at most N such (£,7) we deduce that the number of (z,y) in
question does not exceed N x (1 + 2t/7)".

For our purpose of counting small solutions we can take ¢ = 15, hence the
number of small solutions does not exceed N x (1 4 30/7)".

Thus the total number of solutions does not exceed 42x 41"+ N x (1+30/%)".
This completes the proof of Theorem 3 if I is finitely generated.

In the general case, we may suppose that I" is the division group of a finitely
generated group I’y of rank r. Then it suffices to notice that I' is the direct
limit of subgroups {g: g™ € Iy}, all of them finitely generated and of rank .
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Remarks on the Analytic Complexity of Zeta Functions
ENRICO BOMBIERI

0. Introduction This lecture will survey some recent results obtained in
collaboration with John Friedlander {2] and discuss some problems arising from
our research.

The Dirichlet series for the Riemann zeta-function

oo
1
)= =, validfor o>1,
n=1

where s = ¢ + it, can be used to compute numerically {(s) for ¢ > 1. By
absolute convergence one sees that, even for x not very large, the Dirichlet
polynomial ) . n~*° gives a rather good approximation to {(s) with a re-
mainder o(1) as  — oo. This convergence can be accelerated somewhat by
expanding the remainder by means of the Euler-MacLaurin summation formula
and by using Dirichlet polynomial approximations with smoothed coefficients.

On the other hand, it is the behaviour of {(s) in the critical strip which
is of most interest to us. Here the above polynomial still provides [4, §4.11]
(at least away from the pole) a useful approximation to ((s). The smoothed

polynomials .
1 n
> (1-3)

do an even better job, but all of these only for x > (1 + o(1))|t]/(27). The
length of these polynomials is of order t and if say ¢t > 10°° the computation of
¢(% + it) becomes unfeasible by all methods known to us. Thus the question
arises of determining the analytic complezity of {(s) in the critical strip.

In broad terms, the question can be stated as follows. Suppose we are given a
small £ > 0 and a computer (perhaps with some constraints on storage). Then
we may ask how long it will take to compute {(o + it) within an error ¢, as a
function of s = ¢ +4t. If this time is <. (log|t|)* for some A = A(&) one talks
about polynomial complexity, while if this time is >, |t|® for some § = §(g) > 0,
one talks about exponential complezity. In an intermediate situation where this
time is <, |t|°(1) as t tends to oo, one talks about subexponential complexity.

If o > 1 we have

. 1 -7
C(a-l—zt):Zna_Ht +0{ =

n=1
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uniformly in ¢t and . Thus in order to compute ¢ (o +4t) by this formula within
an error of £ we need, for any fixed ¢ > 1, about O(¢~1/{?~1) terms. Since
n~=?~% can be computed in time <. log® |t|, we see that ¢((s) has polynomial
complexity in any strip A < ¢ < B, for any fixed B > A > 1.

The problem of computing ((s) inside the critical strip is more difficult.
On the assumption of the Lindelof hypothesis one can show that ((s) has
subexponential complexity in any strip % + 6 <o < B, for any fixed 6§ > 0 and
B. By the functional equation, we again get subexponential complexity in any
strip A <o < % — 8, provided § > 0. Thus it appears that the real difficulties
in the computation of {(s) occur precisely when o is very close to %

We suggest that the function ¢ (% +1t) has exponential complexity and more-
over that it requires at least > |t| 3=o() pit operations for its calculation within
an error €. A similar complexity is also expected for Dirichlet series L(% +1t, x).

It seems quite difficult to attack in full generality the problem of determining
the analytic complexity of the zeta function, and a plausible first start consists
in noting that all methods so far proposed for computing the zeta function rely
on either Dirichlet polynomial approximations or Mellin transform approxima-
tions {which we may consider as a continuous version of Dirichlet polynomials).
This is our justification for restricting our initial investigation to approxima-
tions of this type.

The paper [2] studied such approximations to L-functions of a fairly general
type, and showed in many cases that it is not possible to achieve a very good
level of approximation using polynomials essentially shorter than the known
approximations. The so-called approximate functional equation formulas were
not treated in [2], and in this paper we shall sketch a promising way of studying
them. The results obtained support the conjecture that the Riemann zeta
function ¢(3 + it) has exponential complexity [t|3+°().

1. Results We shall consider L-functions L(s) having the following proper-
ties (compare, for example, [3]):

(H1) L(s) is given by an absolutely convergent Dirichlet series
oo
L(s) = Z anpn”*®
n=1

in the half-plane o > 1, with coefficients a,, satisfying a; =1 and a, < n°M),

(H2) L(s) is meromorphic of finite order in the whole complex plane, has
only finitely many poles and satisfies a functional equation’

®(s)L(s) = wd(1 —s) L(1 — s)

1For a function f(s) we define F(s) = f(3).
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where ®(s) = Q° H;=1 I'(Ajs + p;) and
lwl=1, @>0, X;>0, Rep;>0.

From the fact that L(s) is of finite order with finitely many poles and satis-
fies a functional equation of the above type and from the Phragmén -Lindelof
principle, it follows that L(s) has, away from the poles, polynomial growth in
any fixed vertical strip. Moreover L(s), for ¢ < %, has order not less than
|t|2A(3=9) and for o < 0 has order precisely [t|2A(3=%) where A = Z;=1 Aj

Let

0(t) = arg ®(3 +it), S(t) = arg L(} + it),

with the usual conventions about the argument. By a well-known calculation
([4, §9.4]) if T + Imp; > 0 for every j the number N([T,2T); L) of non-trivial
zeros (that is, those not located at the poles of the I' factors) of L(s) satisfying
T <t < 2T is asymptotically given by

N([T,2T}; L) = = 6(2T) — %O(T) +S(T) - S(T)

I
Mk‘ﬂli—'

A;2T+Im T 1
/ logtdi + — (log Q) + S(2T) ~ S(T) +0()
A;T+Im pj Q0 T

L

== (2T'log 2T — TlogT) + ¢, T + O(log T'),

where ¢y, is a constant depending on L. A similar formula holds for negative
T. In our case where a; # 0 we have

S(T) =O(logT)

and the constant ¢y, is explicitly given by

J
1
- ;{logQ-i—Z/\jlog)\j}; (1.1)
j=1
more generally, assuming a,, # 0 and a,, = 0 for n < ny we have

S(T) = _% (log no)T + O(log T)

and (1.1) still holds provided we replace @ by Q/ng.
One should remark that the choice of the parameter @ and the Gamma
factors in the above decomposition of ®(s) are not uniquely determined due to
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the multiplication formula for the Gamma function. However the key quantities
A and ¢y, used here are uniquely determined by L(s).

The next important assumption we make about our L-function is that it
satisfies a weak zero-density estimate. Let N(o,T;L) denote the number of
non-trivial zeros p = §+ 4y of L with 0 <y < T and 8 > ¢. Then we assume:

(H3) For any fized 6§ > 0, we have
N (% +6,T;L) = o(TlogT).

One of the results in [2] obtains a lower bound on the length of the Dirichlet
polynomial

Di(s) =Y _an(z)n™®, lai(z)| > %, an(z) <n°® (1.2)
n<z
(actually, % may be replaced by any fixed positive constant) if it is to be a
useful approximation to L(s). Specifically, it is proved there

Theorem 1 Let L(s) satisfy assumptions (H1)-(H3), and let e,¢’ > 0. Sup-
pose that we have
L(s) = Dy(s) + O(T™%) (1.3)

on the segment {0 = 3 —¢/, T <t <2T}. Then z > T?A~°(),

Examples of functions to which Theorem 1 applies are given by Dirichlet
L-series and Hecke L-series with Grossencharacters, by L-series associated to
holomorphic forms on GL(2), and by products of such functions. In partic-
ular, Theorem 1 applies to Dedekind zeta functions of abelian extensions of
Q, because they can be expressed as finite products of such L-series. It is an
interesting question to verify the condition N(3 + 6,T) = o(T'log T) in other
cases, such as Dedekind zeta functions of arbitrary number fields.

We may also remark that if the L-series factorises as a linear combination
of products of simpler L-series then it may pay off to compute separately the
factors to a high degree of approximation, multiply them together and only
then form the desired linear combination. Thus Theorem 1 is most significant
only in the case in which the L-series also admits an Euler product and is
irreducible (or expected to be irreducible) in Selberg’s sense [3].

2. Examples of Dirichlet polynomial approximations It is well known
that smoothed truncations of a Dirichlet series can provide good approxima-
tions. Let u(x) be a C™ function with compact support in (0, 1], such that

/Ooou(t) dt=1
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and let

v(z) = /:ou(t) dt.

Thus v(0) = 1 and v has compact support in [0,1]. The Mellin transform %(s)
of u(z) is entire of exponential type and rapidly decreasing at oo (i.e., faster
than any negative power of s) in any fixed vertical strip, and u(1) = 1. The
Mellin transform of v(z) is s~ (s + 1).

We have the integral formula for inverse Mellin transforms

1 ~ _y dw
v(zx) = 5o (c)u(w +1)z™% —

valid for any ¢ > 0 and z > 0; here {c) stands for the vertical line Rew = c.
Now consider the Mellin transform

~ d
L, L(s+’w)u(w+1)xw—w.
2mi (©) w

For ¢ > 1, we may integrate term by term, getting

1 dw a n
— | w+ )z = =3 2 (—)
27t J (o (s +w)lw +1)= w n<zn3v z

We may also compute the integral by the calculus of residues, shifting the line
of integration to the left. Now an easy estimate gives (see [2])

Theorem 2 If x > T?A*e then for every firted N and any fized strip A <
o < B we have

as T tends to oo.

This result shows that Theorem 1 is sharp. It also shows that if L(s) is
expressible in terms of new L-series with smaller A’s bounded by A’, then the
analytic complexity of L(s) is <, T2A+o(1),

The situation for approximations to the right of the line ¢ = % is quite
different. We have

Theorem 3 On the Lindeldf hypothesis for L(s), in any fized strip % +6<
o < B we have a n
— In (2 —8po(1)
L(s) = Z:w > v(x) + O(z~8T°W)y

as T tends to oco.
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A result of this type for the Riemann zeta function can be found in Titch-
marsh [4, Th.13.3]. The proof follows the same pattern as for Theorem 2,
except that this time we shift the integral only to the line % — o rather than
—c with ¢ large.

This result justifies our remark in the introduction that on the Lindelof
hypothesis {(s) has subexponential complexity away from the critical line o =
1

2

3. Approximate functional equation As is well known, it is possible to
approximate the Riemann zeta function, using two Dirichlet polynomials rather
than one, in a way which allows shorter polynomials, namely:

()= 3+ xX(9) Y g + 0(a~7) + O(h 77

nlzc n<y

for zy = |t|/(27), z,y = %, and s in any fixed vertical strip, away from the
pole at s = 1. Here x(s) = W%_SF(%(I — s))['(3s)"! appears in the functional
equation as {(s) = x(s)¢(1 — s).

This shows that the Riemann zeta function has complexity at most <.
T%+°(1) in the critical strip, whence

Theorem 4 The function {(s) has complexity at most Tz+o() 4p any fized
vertical strip A < o < B, away from the pole at s = 1.

The same result holds for Dirichlet L-series. An approximate functional
equation of length O(T) is also known for L-series associated to cusp forms for
GL(2), which have A = 1. Thus L-series associated to GL(1) and GL(2) have
complexity at most T2t°(1) in every fixed vertical strip. It is an interesting
open problem to extend this result to L-series on GL(n) with n > 3, even on
the assumption of the appropriate Riemann hypothesis; the difficulty lies with
the approximate functional equation.

It is likely that there should be an analogue to Theorem 1 for approximate
functional equations of this type stating that such an approximate functional
equation in the range T < t < 2T requires zy > T?A~°(1), We shall give in the
next section a sketch of a proof of this statement in the case in which A = %
4. Mean values A simple minded approach to Theorem 1 in the case of {(s)
and more generally L-series associated to GL(1) (what matters here is A < 1)
consists in comparing mean-value estimates of the L-series and of the Dirichlet
polynomial approximation. This is done as follows.

By a well-known mean-value estimate (e.g., take @ = 1 in [1, Théoréme 10])
we have, for fixed 6 > 0,

2T 2
an(x) |2 lan(z)| 26 2
LS ] < 7 X B+ Y nlen o)
T n<z nz n<z

n<z

< T:I)26+o(1) + x1+26+o(1). (4.1)
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On the other hand, applying first our assumed approximation, and then the
functional equation, we get, for each t € [T, 2T, the lower bound

l Z ——6+'Lt

Squaring and integrating (4.2) over ¢, we note that the left-hand side of (4.1)
is

+O(T) > |L(E -6 +it)| > P |L(E +6—it)].  (4.2)

2T
> T25/ |L(3 + 6 +it)|2dt > T+, (4.3)
T

Now (4.1) and (4.3) give z >> T*~°()) which is the conclusion of Theorem 1.

Next we quickly sketch an argument showing that if we have an approximate
functional equation of type

x

Y
) A . b
CE+ity=)Y — x(3+it)> —n%:t +0(1) (4.4)
n=1

m=1

with z,y positive integers and a,,b, = O(n°M) and valid for t € [T,2T) as

T — oo, then we must have zy > T1°(1), The argument extends easily to the

general case in which A = %, using the approximations given by Theorem 2.
Let ¢(z) be a smooth function with compact support in [1,2] and consider

the integral
oo z L
~ 1) — m 14 a2 (L
1= [l vin- 3 g e v Y rgle(g)e
= o(T). (4.5)

In the range [T, 2T, we replace ¢ ( +zt) by a partial sum E =1 n~%~% which

we can do introducing an error < T“, see for example [4, Th.4.11]. Now
¢(3 +it) = x(3 +it)¢(3 — it), therefore we may write the integral (4.5) as

/oo( ET: %in(l 1+zt a +zt)Z —_zt)

+it
=00 \p—zp1 M2 m=1

(X(§ —it) Z 1+zt - Z ma%nzit +X(% — ) Z (;%—j?))(p(%)dt

n= y+1 m=1 n=1

Now we expand the integrand and note that x(§ + it)x(3 — it) = 1, thus
expressing I(T') as a sum of nine integrals

3
1T)= 3 Iy (46)

4,7=1
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where the integrand in I;; is the product of the i-th summand in the first three
sums into parentheses and the j-th summand in the second three sums into
parentheses. Then the crux of the argument can be explained as follows.

We may assume z,y < T'¢ for some £ > 0. We have

(1 g t
ra=— [T (% ) (2 ) el
12 e n;ﬂ natit ngl mi-u | P\T
therefore this integral is majorized by

T T
Z Z (mn)_%+°(1)

m=1n=x+1

/_(:(n/m)"“w(—qt—,)dt‘ . (4.7)

Since ¢ is a smooth function, the integrals in (4.7) are < (z/T)" for any fixed
positive N, thus showing that the contribution of I3 to I(T) is negligible. The
same argument applies to I3;.

Next we verify that

® 1 it (L -N
/ X(3 +it)A go(T)dt<<T (4.8)

—00

for 2m A outside the interval [(1—¢)T, (2+¢)T]. This shows that the contribution
of I35 is also negligible on the assumption that zy < T1~¢.

The contribution of the integrals Ir; and I3 is o(T log T'), because a,, and
b, must be close to 1 on average if (4.4) holds. Thus the main contribution
to I(T) in the decomposition (4.6) comes from the integral I;;. By (4.8) this
contribution is

N —it, (1
> [ - inmn) (g )
r<m,y<n -0
(1—e)T<2rmn<(2+€)T

and we can evaluate the integrals accurately using stationary phase. It turns
out that for 2rmn € [T, 2T the integral equals

27r(mn)%<p(27rmn/T)
with a rather small error. This yields

I(T)=ILi+o(TlogT) ~2r Y @(2nmn/T)

z<m,y<n

~ (/oo go(z)dz) Tlog (%)

-0
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Since ry < T'~¢ this contradicts I(T) = o(T), concluding the sketch of the
proof.

A refinement of this argument should give the more precise result that an
approximation (4.4) with ¢ ~ T requires zy > (1 + 0(1))T'/(27); this would be
best possible in view of the approximate functional equation.

5. Counting zeros The above arguments based on square mean-values fail
if A > % However, an alternative method based on counting zeros works in
general, provided we assume (H3). This may be considered as comparing the
integral of log |L(s)| and log |D(s)|.

The strategy of our proof consists in counting the number of zeros of L(s)
and D,(s) in a suitable rectangle. We expect this number to be about the same
if D, is a good approximation to L. We have

Proposition Let D.(s) given by (1.2) satisfy |a1(z)| > % and a,(z) <€ n.
Then, uniformly for a < ¢ < 0o we have

arg D, (s) < (|a| + 1) log x.

Let also N(a,T,T + H; D,) denote the number of zeros of D,(s) satisfying
oc>a, T <t<T+H, where H<T. Then, uniformly for —H < a < —1, we
have

N(oa,T,T + H; D,) < %logw+0(|a|%H%logx), (5.1)
where the implied constant is absolute.

The proof is a standard application of Littlewood’s lemma.
We note in this respect that the finite Euler product

fo= 1 -0

p<logz

has length

exp( Z logp) = glto(®)
p<logz

by the prime number theorem and has, for T < ¢t < 2T, zeros on the imaginary
axis at t = 2n7/logp. Their number is

> (5] - [222]) ~ gy s

p<logz

again by the prime number theorem. Thus the bound given in (5.1) is asymp-
totically sharp.
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Now we briefly sketch the proof of Theorem 1, referring to [2] for details.
The idea is to use hypothesis (H3) to show that L(s) behaves most of the
time almost as if one had a Riemann hypothesis at our disposal, save for an
exceptional set of small measure. This can now be used in two ways, one to
use the approximation (1.3) to show that there is a ‘good’ set E C [T, 2T] of
measure m(E) = (1 — O(6))T, consisting of intervals I, of length 1, such that

/ log |L(L — 6 + it)] dt
E
172
5/ log | D (3 —6+it)|dt+0<(6log 5) TlogT). (5.2)
E

Since L(s) behaves in a horizontal strip at a good interval almost as if one had
a Riemann hypothesis, application of Littlewood’s lemma shows that

/ log |L(% — 8+ it)|dt > (6 — O(6%))AT log T. (5.3)
E
Finally the Proposition can be used to obtain
/ log|Dy(3 — 6 +it)|dt < %(6 + O0(6%)T log =, (5.4)
E

and Theorem 2 follows from (5.2), (5.3), and (5.4) as § — 0.

References

[1] E. Bombieri. Le Grand Crible dans la Théorie Analytique des Nombres (2nd
ed). Astérisque 18, Société Math. de France, Paris, 1987.

[2] E. Bombieri and J.B. Friedlander. Dirichlet polynomial approximations to
zeta functions. Ann. Sc. Norm. Sup. Pisa (IV), 22 (1995), 517-544.

[3] A. Selberg. Old and new conjectures and results about a class of Dirichlet
series. Proc. Amalfi Conf. Analytic Number Theory (E. Bombieri, A. Perelli,
S. Salerno and U. Zannier, Eds.), Univ. di Salerno, Salerno, 1992, pp. 367-
385; Collected Papers, vol. I, Springer-Verlag, Berlin 1991, pp. 47-63.

{4] E.C. Titchmarsh. The Theory of the Riemann Zeta-Function (2nd ed., 2nd
prnt., revised by D.R. Heath-Brown). Oxford Univ. Press, Oxford, 1986.

Enrico Bombieri
School of Mathematics, Institute for Advanced Study
Princeton, New Jersey 08540, U.S.A.



3

Normal Distribution of Zeta Functions and Applications
ENRICO BOMBIERI and ALBERTO PERELLI

0. Introduction A fundamental result of Selberg obtains the existence of
a distribution function for log ((% + it) and more generally of log L(% + it)
for a wide class of L-functions. Equally importantly, Selberg showed how the
logarithms log L(3 + it) of ‘independent’ (in a sense to be clarified later on)
L-functions are also statistically independent. These results have applications
to the study of the distribution of zeros of certain classes of Dirichlet series,
which will be examined in this paper; detailed proofs can be found in [1] and

(2].
1. Main result We work in the moderately general setting of the paper [1]
of Bombieri and Hejhal, and consider N functions Li(s),..., Ly (s) satisfying
the following basic hypotheses [1, §3]f:
Hypothesis B

(I) Each L; will be assumed to have an Euler product of the form

d
Li(s) = [T Tt - eapp™) "
p i=1
with |a;p| < p? for some fized 0 < 8 < % andi=1,...,d.
(II) We shall also suppose that

d
>N Jail? = 0(xMF)
p<X i=1

holds for every € > 0.

(III) Each L; is assumed to have an analytic continuation to all of C as a
meromorphic function of finite order with o finite number of poles, all on the
line 0 = 1, and to satisfy a functional equation of the form

B;(s) = €; B;(1 - s),

t With respect to [1], we do not ask here that the L; satisfy the same functional equation
in (II1).
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where ®;(s) = Q3 T2y T(Nijs + pi;)L;i(s), Q5 > 0, Xij > 0, Repg; > 0 and
le;| = 1.

(IV) The coefficients of L1,...,Ln will be assumed to satisfy

a;j(p)a 1
Z o (plarp) _ ik loglog X + ¢, +O<——-—)
a<x P log X
for X > 2, certain positive constants ny,...,ny and Kronecker’s 6;;.

We explicitly remark that all data involved in hypothesis B concerning a
function L;(s) may depend on j.

We refer to §3 of [1] for a thorough discussion of hypothesis B, of its standard
consequences and of several examples of functions satisfying it. Here we point
out only that B(II) implies that both the Dirichlet series and the Euler product
of L;(s) converge absolutely for o > 1, B(I) ensures that L;(s) # 0 for o > 1
and B(III) gives rise to the familiar notions of critical strip, critical line and
trivial and non-trivial zeros. Moreover, writing

A=A, (1)

N;(t)=#{p: Lj(p)=0, 0<Rep<1land 0 <Imp <t}
and )
S;(t) = —argL;(3 +it),

for sufficiently large ¢t we have
Aj , 1
N;(t) = —;-tlogt+cjt+cj+3j(t)+0(z) @)
with certain constants ¢; and cj.

Condition B(IV), introduced by Selberg [12], plays a special role, since it
provides a form of ‘near-orthogonality’ of the functions L;(s); the ‘indepen-
dence’ alluded to at the beginning of the section is this property of near-
orthogonality. One can show that B(IV) implies the linear independence over
C of Ly(s),...,Ln(s); see Bombieri-Hejhal {1] and Kaczorowski-Perelli [8] for
further results in this direction.

We expect that the functions L;(s) satisfy the Generalized Riemann Hy-
pothesis, GRH. As a substitute of it in our arguments, we will instead assume
the following density estimate which trivially follows from GRH. Let

Ny(@,T) = #{p: L;(p) =0, Rep> o and [Imp| < T}.
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Hypothesis D
There exists 0 < a < 1 such that

Nj(o,T) « T*=4o=1D jogT

s . 1
forj=1,...,N, uniformly for o > 3.

The main point in introducing hypothesis D is that, unlike GRH, it can be
verified in many interesting cases. In fact, it has been proved by Selberg [11] for
the Riemann zeta function, by Fujii [5] for Dirichlet L-functions, and by Luo
[10] in the more difficult case of L-functions attached to holomorphic modular
forms for GL(2).

The following result is stated in [12] and proved} in detail in [1].
Theorem B  Suppose the L; satisfy hypotheses B and D. Then the functions

log|Li(3 +it)] argLy(3 +1t) log|Ln(% +it)| argLn(3 +it)
Vrniloglogt’ /mnjloglogt’ =~~~ «/mnyxloglogt’ +/mnyloglog t

become distributed, in the limit of large t, like independent random variables,
each having gaussian density exp(—mnu?)du.

The proof of Theorem B in [1] is a variant of Selberg’s {11} moments method,
which leads in a more direct way to the distribution function for the log L;(3 +
it). The study of moments gives stronger results, in particular about the rate
of convergence. The best exposition of Selberg’s method is still [11]; moments
of log (o + it) with o > & are studied in the book [9] by A. Laurinéikas, but
we will not need those results here.

For the applications we have in mind the following ‘short interval’ version
of Theorem B is more appropriate.

Let M > e, write h = M/logT and

_log Lj(3 +i(t + h)) — log L;(5 +it)
B v/ 2mn;log M ’

and let up. denote the associated probability measure on CV, defined by

Vi)

pur(Q) = %|{t € [T,2T): (Vi(t),...,VN(t)) € Q}] (3)

for every open set Q@ C CVN. Moreover, let e~IzI* denote the gaussian measure
on CV and let dw be the euclidean density on CV.

{ Hypothesis B in [1] requires the L; to satisfy the same functional equation. However,
inspection of [1] shows that the functional equation is never used in the proof of Theorem B
below and therefore the result holds with hypothesis B as stated here.
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Theorem 1 Let Lyi(s),...,Ln(s) satisfy hypotheses B and D and suppose

M = M(T) < logT/loglogT tends to oo as T — oo. Then, as T — 00, pup

converges weakly to the gaussian measure with associated density e~z .
The next section contains a sketch of the proof of Theorem 1, and the fol-

lowing two sections describe two applications, one {1] about zeros of linear
combinations of the L;, and the other [2] about distinct zeros of the L;.

2. Sketch of proof of Theorem 1 In this section we follow the arguments
in §5 of [1]. For 0 > 1 and j =1,...,N we write

oo 0 n= 17
logLi(s) = Y c;(mAi(m)n™,  As(n) =< A(n) n> 9
n=1 logn -7

and denote by u(z) a real positive C™ function with compact support in [1, €]
and by u(s) its Mellin transform. We also write

v(z) = /:0 u(t)dt

and assume that u is normalized so that v(0) = 1.
The first step, an exercise in explicit formulas, proves
Lemma 1 Assume (I), (II), and (III) of hypothesis B. Then

= ¢j(n)A1(n)
].Og LJ(% + Zt) = Z ]n—%-'-:t___v(elogn/logX)

n=1
+Z/;o pis 1+ (p—s)logX)do +0(1),  (4)

where |t| is sufficiently large and not the ordinate of a zero of L;(s), where
2 < X < t? and where p runs over zeros of Lj(s) with0 <Rep < 1.

This gives us a decomposition of (4) as
log L;(3 + it) = D;(3 + it, X) + R;(3 + it, X)

where D;(% + it, X) is the Dirichlet series in the right-hand side of (4).

The idea behind this decomposition is the following. Suppose X is a function
of T which goes to oo slower than any positive power of T, hence X = T°(1),
The D;(s, X) are rather short Dirichlet series and their mixed moments of any
positive integral order can be calculated easily, because the contribution of the
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diagonal dominates over the rest, due to (IV') of hypothesis B. As T — oo these
moments, after normalization of D;, agree with the corresponding moments for
the gaussian measure. In contrast with Selberg’s approach, there is no need
to control the higher moments of the remainders R;, and control of the L!-
norm is all we need to ensure weak convergence to gaussian measure of the
probability measure associated to L;. This proves Theorem B. Hypothesis D
is used precisely in this last step, to achieve a saving of 1/log X with respect
to the trivial estimate.

For the proof of Theorem 1 we need asymptotics for the mixed moments of
short interval differences of the Dj(% +it, X).
For sufficiently large M, write h = M/log T and

T;(t) = Dj(3 +i(t + h), X) — D;(% +it, X).

Moreover, let k; >0 and [; > 0, j =1,..., N be integers and let us abbreviate
k= (ki,...,kn), Kj = ki +- - +k;, K = Ky and similarly for 1, L; and L.
We also write k! = H;V=1 k;!.

Lemma 2 Assume hypothesis B and let
X <TYEFHY) M <logT/loglog X.

Write

50 =3 U0 ) = cytm a8 e osn ),
n=1

Then
[ ET(0)" (570 mseabtr T oo (30022
j=1

T I
+O(T(log+ (lMlOgT))%(K—'-L_I)).

]:
2 log X

The proof is an adaptation of the proof of Lemma 6 of [1}, which gives the
asymptotics of the mixed moments of the D;(3 + it, X) rather than of the
differences D;(3 + i(t + h), X) — D;(% +it, X).

Lemma 2 yields the asymptotic estimate

2T N ki 1: N
/ I1(z0)° (zj(t)) "dt ~ i KT [ (25 log MY
j=1

T j=1
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if M = M(T) — oo with M <« logT/loglog T, which we shall suppose.

The rest of the proof follows closely that of Theorem B of [1]. Let M =
M(T) <« logT/loglogT tend to co as T — oo and choose

so that

logT log X -
1 ~ = 1/4
log ( Ml X) log M, Tog T (log M) ,

and X = T°. Moreover, let
U;(t) = (2mn;log M)”1/2Ej(t)

and define fiT to be the associated probability measure on CV, as in (3).
Then, assuming that M < logT/loglogT and arguing exactly as in the
proof of Theorem B of [1], from Lemma 2 we see that fir converges weakly, as
T — oo, to the gaussian measure e~"lzI*,
Finally, the required L'-norm estimate for R; is given in [1], Corollary to
Lemma 3; it is a rather easy consequence of (4) and of Hypothesis D. With
the above choice of X we get the bound

2T
1 / () dt < (log M)~Y/*,

which tends to 0 as T tends to co. Hence pp converges to the same gaussian
measure, completing the sketch of our proof.

3. Applications: Zeros of linear combinations of L-functions In this
section, we assume that the functions L; satisfy a mild condition of well-spacing
for zeros, namely:
Hypothesis Hy

For each Euler product L;(s), we have

N T<~y< Iy <
lim < lim #( 72Ty -y <e/log T) =0.
e—0+ | T—o0 Tlog T

The following result is proved in [1]. Consider a linear combination

N
HOEDRAC



Normal Distribution of Zeta Functions and Applications 37

where the L; satisfy a same functional equation and the phases of the coeffi-
cients b; have been adjusted so that

m
b;Q° H T'(A\is+ pi)L;(s) is real on the critical line o =1

i=1
forj=1,...,N.

Theorem A Suppose the L; satisfy hypotheses B with a same functional
equation, GRH and Ho. Let also the b; be as before. Then, in the limit of
large T, almost all zeros of f(s) = > b;L;(s) are simple and lie on the critical
1

lineo = 3.

One may ask what can be done here with weaker hypotheses or no hypotheses
at all. First of all, one can dispense with GRH and replace it with hypothesis D
and that almost all zeros of L; are on the critical line, with the same conclusion.

If Lj(s) = L(s, x;) are Dirichlet L-series for a set of primitive even (or odd)
characters to a same modulus ¢, then one can prove, assuming only that almost
all zeros of L; are on the critical line, that there are > T'log T zeros of f(s)
on the critical line if N = 2 or 3, and in fact > T'logT simple zeros if N = 2,
thus dispensing entirely with hypothesis Hg. The same conclusion holds if we
assume that a sufficiently large percentage of zeros of L; are on the critical
line, rather than almost all zeros. For the time being, existing lower bounds
for the number of zeros of Dirichlet L-series on the critical line are too low for
proving unconditionally that if N = 2 then f(s) has > TlogT zeros on the
critical line.

Unconditionally, A.A. Karatsuba [7] has shown that if the L; are Dirichlet
L-series for primitive characters, then f(s) has at least >> T(log T)®~¢ zeros
on the critical line, for a certain 8 > 0 (this is also mentioned* in [1]). The
proof, which is quite intricate, uses ‘simultaneous mollifiers’ for the Dirichlet
series Lj;.

We refer to [1] for a detailed proof of Theorem A. However, the basic idea
in the proof of Theorem A is quite simple and can be described as follows.

Let Fj(t) = bje*’L;(3 + it) where ¢* is the phase factor arising from the
functional equation of the L;, so every Fj(t) is real. According to Theorem B,
the quantities log |F;(t)|/1/7n;loglogt behave like independent random vari-
ables. Thus one expects F(t) = }_; Fj(t) to behave most of the time like
(1 4 o(1))F;(t) where j is determined by |F;(t)| > |Fj(t)| for j* # j. Let us

* The paper [7] misattributes to Selberg a result, stated there as Theorem 5. What
Selberg showed, and what the first author communicated to Karatsuba in Amalfi, is the
lower bound > T+/TogT and not the lower bound > T+/loglogT stated there. This is
particularly misleading in view of the statement of Theorem 6 in [7]. Compare {1], p. 822,
footnote.
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say that in this case F; dominates at t. Since all F; are real, there will be a
zero of F(t) between t; and t whenever F; dominates at ¢; and t2 and Fj(t1)
and Fj(t2) have opposite signs. On the other hand, one expects F;(t) to have
(A/7)M + o(M) zeros in any interval [T,T + M/logT]. On the assumption
of GRH, this is indeed the case for most such intervals. If these zeros are rea-
sonably well spaced, and it is here that one uses hypothesis Hg, one can then
show that F'(t) has about the same number of sign changes as there are zeros
of F;(t) in that interval.

The main difficulty in carrying out a rigorous proof along these lines arises
from the fact that all the required properties can be established only in a weak
measure theoretic setting. Theorem B and Theorem 1 provide the necessary
tools in the proofs.

4. Applications: Distinct zeros of L-functions Another application of
Theorem 1 shows that independent L-functions (in the sense of B(IV)) satis-
fying functional equations with the same ‘number’ of I" factors have a positive
proportion of distinct zeros, counting multiplicities. In order to state our re-
sult, we define the counting function D(T, L1, L2) of distinct non-trivial zeros,
counted with multiplicity, of two functions L;(s) and Ly(s) to be

D(T,L1, L) = ), max(ma(p) — ma(p),0),

0<Rep<1
0<Im p<T

where p runs over zeros of Li(s)La(s) without multiplicity and m;(p) is the
multiplicity of p as a zero of L;.

Let also A; = 3, An; be defined by (1), so that [T, I'(Anjs + pnj) is the
product of the gamma. factors appearing in the functional equation for L.

Theorem 2  Let L1(s) and Lo(s) satisfy hypotheses B and D and suppose
that A; = Ay. Then
D(T, L1,L2) > TlogT.

As mentioned before, hypothesis D has been proved for large classes of au-
tomorphic GL(1) and GL(2) L-functions.

The first result of this type has been obtained by Fujii [6] in the case of
two primitive Dirichlet L-functions, by means of Selberg’s moments method.
The problem of counting strongly-distinct zeros, i.e., zeros placed at different
points, is more difficult. The best results are due to Conrey—Ghosh—Gonek
[3], [4]. They deal with this problem, in the case of two primitive Dirichlet
L-functions, by considering the more difficult question of getting simple zeros
of L(s,x1)L(s,Xx2), and obtain that there are > T%/!' such zeros up to T.
Moreover, if the Riemann Hypothesis is assumed for one of the two functions,
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then a positive proportion of such zeros is obtained. Note however that the
analytic techniques in [3] and [4] do not extend beyond the case of GL(1) L-
functions, mainly because the product of two GL(n) L-functions is a GL(2n)
L-function, and all analytic techniques based on square mean-values break
down for GL(m) L-functions as soon as m > 3.

Our method of proof of Theorem 2 does not seem to be capable of refinement
to yield the expected result that almost all zeros of L; and L, are distinct, let
alone strongly-distinct. Moreover, since our proof is by contradiction, we do
not obtain an estimate for the constant implicit in the Vinogradov symbol >
appearing in Theorem 2. This however can be done, at the cost of introducing
substantial additional complications in the proof.

We give a sketch of the proof of Theorem 2.

The idea is to consider the number of zeros (counted with multiplicity) of
L, and Ly in rather short intervals of type [t,t + h| with ¢t € [T,2T] and
h = M/logT, with M = M(T) tending to oo arbitrarily slowly as T — oo.

Since we assume A; = Ay, using (2) we verify that the excess A(¢, h) of zeros
of L; over Ly in such an interval is given by

A(t,h) = (Si(t+h) = S(t) - (Salt +h) = Sa(t) + O(h).  (5)

We also have
™

v/ 2mnilog M (

by definition of V; and S;, therefore if

Im V;(t) = Sj(t + R) — 55(t) (6)

ImV,(t) <0 and ImWVi(t) >1 )

we obtain from (5) and (6) the estimate

- %(27rn2 log M)*Im V3 () + O(h)

A(t, h) = =(2nny log M)*Im Vi (t)

> —(27my logM)% + O(h).

A==

Denote by E the set of t € [T, 2T] for which (7) holds. In order to get a
lower bound for |E|, we consider the set ‘

Q={(21,22) €C?:Imz >1 and Imz; <0},

so that
|E| = T up(Q).
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Now from Theorem 1 we get
lim NT(Q) — / e—'lr"Z”zdw > 1,
T—o0 Q

thus showing that |E| >> T. Hence we deduce the existence of > T'/h values
tr € [T,2T), with |t, —ts| > h if r # s, such that

Alto h) > %(271'711 log M)} + O(h).

It follows that

D(2T, Ly, Ly) — D(T, L1, Lg) > 3 Aty h) > Yoo If,’\jm TlogT.
T

Since M = M(T) tends to infinity arbitrarily slowly, we must have
D(2Ta L, L2) - D(T’ Ly, L2) > TlOgT7
completing the proof of Theorem 2.
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Goldbach Numbers and Uniform Distribution mod 1
JORG BRUDERN and ALBERTO PERELLI

1. Introduction As an illustrative example of their celebrated circle method,
Hardy and Littlewood were able to show that subject to the truth of the Gen-
eralized Riemann Hypothesis, almost all even natural numbers are the sum of
two primes, the yet unproven hypothesis being removed later as a consequence
of Vinogradov’s work. Natural numbers which are representable as the sum of
two primes are called Goldbach numbers, and it is still not known whether all,
or at least all but finitely many, even positive integers > 4 are of this form.
The best estimate for the number of possible exceptions is due to Montgomery
and Vaughan [4]. They showed that all but O(X'~%) even natural numbers
not exceeding X are Goldbach numbers, for some small § > 0.

More information about possible exceptions can be obtained by considering
thin subsequences of the even numbers, with the aim of showing that almost
all numbers in the subsequence are Goldbach numbers. In this direction, short
intervals have been treated by various authors. It is now known that almost
all even numbers in the interval [X,X 4 X11/160+¢] are Goldbach numbers
(see Baker, Harman and Pintz [1]). Perelli [5] has shown that almost all even
positive values of an integer polynomial satisfying some natural arithmetical
conditions are Goldbach numbers.

In this paper we give further examples of sequences with this property.
They arise, roughly speaking, as integer approximations to values of real-valued
functions at integers points whose fractional parts are uniformly distributed
modulo one. We need some notation to make this precise.

Let V C R be a set with |u; — ve] > 2 for any distinct values vy, v2 € V.
We write V(X)) for the number of v € V with v £ X, and associate with V the
exponential sum

T(a) = Z e(aw). (1)

vEV,v<X

The set V is called admissible sequence if for any A > 0 thereisa B = B(A) > 0
with B — oo as A — oo, and such that uniformly for X~(log X)* < |a| <
(log X)* one has

T(a) < V(X)(log X)™B. (2)

We remark that integer sequences are not admissible since (2) clearly fails for
a = 1. For an admissible sequence V, let E(V,X) denote the number of all
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v € V with v < X for which the inequality |v — p; — pa] < 1 has no solution in
odd primes p;, ps.

Theorem LetV be an admissible sequence. Then we have, for any C > 0,
EWV,X) < V(X)(log X)°.

For any v € V the interval [v—1,v+1) contains exactly one even integer, which
we denote by ¥. Since V is admissible, the ¥ are all distinct. Our Theorem
implies, in particular, that almost all ¥ are Goldbach numbers, since V is not
an integer sequence.

Among the numerous examples of admissible sequences, the simplest is
{n®: n € N} where ¢ > 1 is a fixed non-integral real number. In this case
the exponential sum estimate (2) is a simple consequence of van der Corput’s
method (see Graham and Kolesnik [3], Theorem 2.8, for example). A more
interesting feature of our result is that it opens a road to test Goldbach’s
conjecture on average over sequences which increase more rapidly than any
polynomial. In fact, Vinogradov’s method can be used to show that n!os logn
is admissible, and an even thinner admissible sequence is exp{(logn)?), where
1<y« % is fixed. This also follows from Vinogradov’s method, but lack of
space does not permit to discuss the details here. In this particular example,
the exponential sum estimate (2) can be considerably improved, and a variant
of the argument below yields a better bound for the exceptional set. We refer
to our forthcoming paper [2].

We have already remarked that integer sequences are never admissible.
However, as will be clear from the argument below, it is easy to write down an
analogue of our Theorem for integer sequences. But, as we shall see in §4, the
numbers ¥ are uniformly distributed in residue classes, and this is in marked
contrast with many interesting integer sequences which usually obey a more
complicated distribution law. In such a case, the exponential sum T'(a) will
have more than one peak in [0,1]. It appears difficult to imagine a variant
of our Theorem for integer sequences which covers all situations to which the
underlying principle might be applied. Perelli [5] can serve as a model of what
is possible in this direction.

2. A simple lemma We require an easy auxiliary formula. For a real
number v we write v = [v] + {v} with [v] € Z and {v} € [0,1), as usual.

Lemma 1 Let f: R — C be a function of period 1 which is integrable over
[0,1], and let

1
f(n) = /0 F(B)e(~Br) dp

denote its n-th Fourier coefficient. Then we have, for any v € R,

[ steet-an) (F2) da = (1 - DD + (0701 + )

Kiyes
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Proof For a function g € L}(R) we write

@) = | ” g(B)e(—ap) dp

—0o0

for its Fourier transform. Now let

o - (222).
Then R
K(a) = max(1 — |¢f,0). 3)

‘We now observe that the left hand side of the proposed formula equals

© n+1
> [ fee-anKia)da

n=—co V"

1 oo
- /0 B Y e(—v(B+n)K(B+n)dp. @)

n=-—00

Since the Fourier transform of G(t) = e(—v(8+1t))K(8+t) is G(s) = e(8s)K (v
+ s), from the Poisson summation formula and (3) we get

[e <] o0

> e(~v(B+n)K(B+n)= > eBn)K(v+n)

= e(=BRNK({v}) + (B[] - B)K({v} - 1).
Inserting this into (4), the lemma follows.

3. The Fourier transform method We now embark on the main argu-
ment. The letter p, with or without subscripts, always denotes an odd prime.
With this convention understood, we then consider the sum

rw= Y (1—|p1+p2—v|)(logpi)(logp)
|p14p2-v|<1

where v > 1 is real. Then, on writing

S(a) = ) (logp)e(ap),

p<X
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we note that for 1 < v < X one has
o0
r(v) = / S(0)?e(~aw)K(a) da. (5)
~00

Now let A > 100 and put P = (log X)%4. Let 9 denote the the union
of all intervals |@ — a/g| < P/X with (a,q) = 1 and 1 < ¢ < P. Write
My = MN[0,1]. By Lemma 1 with f(a) = S(a)? for @ € M and f(a) =0
otherwise, we deduce that

/ms<a>2e<—av>K<a> doo = (1- (WD) R(W]) + (W}R(W] +1),  (6)

where
R(m) = S(a)’e(—am) da.
B0}

The integral R(m) is the familiar major arc contribution in the classical treat-
ment of the binary Goldbach problem. For integers m with 1 < m < X +1
one has

R(m) = Z cq(m) + O(X (log X) ™44y, (7)
q<P

where

_ON (O _ gy Bla/(am))
wlm) = 3 () =95 )

(a,q)=1

is Ramanujan’s sum. For a proof of (7) see Vaughan {6, (3.22)], for example.

The natural next step would be to complete the sum in (7) to the singular
series. Unfortunately this does not work in our case for individual m. A
standard argument based on the bound

leg(m)] < (g,m) (8)
shows that

Z)¢Z m)| < Q7'me. (9)

Therefore, we can indeed complete the sum in (7), and the resulting series is
absolutely convergent and can be written as an Euler product. This yields

u(q B q
Z q)2 cq(m )—Z #(q)? Cq(m) (10)

q<P q>P
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with

G(m):pl;ll(l—-(—p—_l—l)z)gﬁ-i-ﬁ),

where the products extend over all primes including 2 (contrary to cur overall
convention, in this formula only). A straightforward use of (9) with @ = P to
estimate the error in (10) would produce an unacceptable loss. We circumvent
this difficulty and apply (9) with @ = X'/3. Then, for m < X + 1, we can
rearrange (10) as

2
> g§332cq(m> — &(m) — A(m) + O(X~1/4) (11)
q<P
where ( )2
= B9 ).
A(m) = PZX L) cy(m) (12)

By (6), (7), and (11), we now conclude as follows:

Lemma 2 For real v with1 <v < X one has

/MS(aﬁe(—av)K(a) dov = (1 - () )(S([e]) + A(])
+ {v}([v] + D(S([v] + 1) + A(Jv] + 1)) + O(X (log X)~*4).

We end our preliminary analysis of the major arc contribution by extract-
ing a lower bound from the asymptotic relation in Lemma 2. This will only be
possible with some control on {v} and A. With this in mind we first observe
that &(m) = 0 if m is odd, and if m is even, then G(m) > 1. Let B be
the positive number defined via (1) and (2). We may assume, without loss of
generality, that B < A. If we also suppose that %X <v <X and

{v} > (log X)~5/%, 1—{v} > (log X)~#/%, (13)
|A([])] < (log X)~576,  |A([v] +1)| < (log X) ™5/, (14)
then Lemma 2 gives

/ S(a)?e(—av)K () do > X (log X)~B/8,
m

In the next section, we show that (13) and (14) hold for almost all v in an
admissible sequence.
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4. Counting exceptions We remarked already that admissible sequences
have uniformly distributed fractional parts. The following simple upper bound
is enough for our purposes.

Lemma 3 Let V be an admissible sequence. Then we have, for any B > 0,
#{veV: v<X, a<{av} <b} K V(X)(b-a+ (logX) B) (15)

uniformly for 0 < a<b<1land X~V2<|a| <1.

Proof This is well known and may be refined to an asymptotic formula. We
give a quick proof for completeness. Let N be a natural number. The Féjer

kernel 1 sinn N2 .
owio= (BT~ 5 (1B

is a non-negative function of period 1, and one has ¥n(t) > 1N for |t] <
1/(2N).

Now fix B > 0 and write § = b — a. We first prove the lemma for
(log X)~B <6 < 1. Take N = [671]. Then, the left hand side of (15) does not
exceed

2 3 wn(aw-3) g o= ke () Tika)

vEV,v<X |k|<N

The term with k = 0 contributes 4N~1T(0) < §V(X). For 0 < |k| < N we
have |ka| < (logX)EB. Choose A in (2) so large that B < B(A). Since we
may suppose that B(A) < A, we deduce that T(ka) < V(X)(log X)~2, and
Lemma 3 follows in this case.

If 0 < 6 < (log X)~B we increase the left hand side of (15) and replace b
with a + (log X)~B. We then appeal to the previous case, and again confirm
(15). For 6 > § the bound (15) is trivial, and the proof of Lemma 3 is complete.

As an immediate corollary of Lemma 3 (with @ = 1) we deduce that
(13) holds for all but O(V(X) (log X)~5/8) values of v < X in an admissible
sequence V.

We now count exceptions to (14). We shall establish the bound

Y 1A <« V(X)(log X) B/, (16)
vEV <X

From this we infer that |A([v])| > (log X)~5/® can hold for at most O(V (X)
x (log X)~B/3) values of v < X,v € V. Now note that if V is admissible, then
the sequence v + 1, v € V, is also admissible; this follows from (1) and (2).
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Hence, (16) also holds with [v] + 1 in place of [v]. Therefore, the number of
v < X, v €V, for which (14) does not hold is bounded by O(V (X )(log X)~2/3).
We summarize these results in the following

Lemma 4 LetV be an admissible sequence. Then, for all but
O(V (X)(log X)/%)

values of v € V in the range 1 X < v < X, we have
/ S(0)?e(—aw) K (@) da > X (log X)~5/5,
m

Here B is defined via (1) and (2).

It remains to verify (16). For real v and d € N one has [v] = 0 (mod d) if
and only if {v/d} < 1/d. In Lemma 3 we choose a = 0, b = o = 1/d. Then,
uniformly for 1 <d < X Y/ 2 we find that

>k V(dX ) 4 V(X)(log X)~B (17)
[v]=0 ( mod d)

where, here and in the following argument, the summation is restricted to
veVv<X.
By (8), (12), and (17) we get

INGIEEDS zggqy

P<g<X1/3 v

M(Q)2 -B
< > > (V(X) +dV(X)(log X)~B)

2
P<g<Xx1/3 ¢(q) dlg

wa)dle) V(X qd(q)
<V 2L o * Tog X)7 2

and (16) follows immediately.

5. The minor arcs We complete the proof of the theorem by estimating
the contribution of the minor arcs m = R \ 9 to the integral (5).
We begin by cutting off a tail from m. For any k € N,

| /k sy Sl oK (@) do

2
< S@P
k<|a|<k+1 ||

1
< %/ |S(@)|?da < k72X log X
0
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and hence
/ S(a)%e(—aw) K (o) da < X (log X)™4, (18)
e} > (log X )4

uniformly in v.
It now suffices to consider the truncated minor arcs

n =mn[—(log X)*4, (log X)4].

We apply the familiar method of estimating the variance

E= Z ‘/S(a)%(—av)K(a)da 2.

vEV <X YN

Squaring out produces

== [ [ S@PSPK@KET (@ p) dads. (19)
Invoking the simple bound
[1s@PE@das [~ IsPK (@) da
= (logp)’ < Xlog X, (20)
p<X

we deduce from (2) that the contribution to (19) arising from pairs (o, 3) € nxn
with |a — 3| > X~ 1(log X)*# does not exceed

2

< V(X)(log X)-B( / 15(2) 2K (a) da)

< X2V (X)(log X)?B.
In the remaining set, we have 8 = o + ¢ with |¢| < X 1(log X)4. After a
change of variable we see that this set contributes to {19) at most

K V(X)X longx;p / |S(a + ¢)|2d¢;

I¢I< X~ (log X)*
a+t+(En

here we have used (20) and the trivial bound for T(a). By Vinogradov’s es-
timate (see Theorem 3.1 of Vaughan [6]) we have S(8) < X(log X)~24 for
B € m. Hence, the quantity under consideration is

< V(X)X?%(log X)1—34,
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and since A > B by our overall assumption, this yields
E < V(X)X2%(log X)*~B,

A standard argument now shows that the inequality

/ S(e)2e(—va)K () daj < X (log X)~B/4

holds for all but O(V(X)(log X)~5/3) values of v < X,v € V. Combin-
ing this with (18), (5) and Lemma 4, we have now shown that for all but
O(V(X)(log X)~B/8) values of v € V with X < v < X we have r(v) >
X (log X)~B/8. The theorem follows by applying this result with 277X, where
0<j<2logX.
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The Number of Algebraic Numbers of Given Degree
Approximating a Given Algebraic Number

JAN-HENDRIK EVERTSE

1. Introduction In 1955, Roth [15] proved his celebrated theorem, that for
every real algebraic number « and every real £ > 2 the inequality

‘a - g} < {max(|z|,|y|)} " in z,y € Z with ged(z,y) =1 (1.1)

has only finitely many solutions. Roth’s proof is by contradiction. Assuming
that (1.1) has infinitely many solutions, Roth constructed an auxiliary polyno-
mial in a large number of variables, k say, of which all low order partial deriva-
tives vanish in a point (x1/y1,...,2x/yx) for certain solutions (xy,v1),...,
(zk,yx) of (1.1), and then showed, using a non-vanishing result now known as
Roth’s lemma, that this is not possible.

Assume that 2 < s < 3. By making explicit Roth’s arguments, Dav-
enport and Roth [3] determined an explicit upper bound for the number of
solutions of (1.1) and this was improved later by Mignotte [12]. Bombieri and
van der Poorten [1] obtained a much better upper bound by using instead of
Roth’s lemma a non-vanishing result for polynomials of Esnault and Viehweg
[4]. Recently, Corvaja [2] gave an alternative proof of the result of Bombieri
and van der Poorten, in which he replaced the construction of an auxiliary
polynomial by the use of interpolation determinants as introduced by Laurent
in transcendence theory.

We recall the result of Bombieri and van der Poorten. The Mahler measure
M (@) of an algebraic number o (always assumed to belong to C) is defined by

M(a) = ool [ [max(1, o)

where r = dega, oY, ..., a(") are the conjugates of a over Q and ay is a ratio-
nal integer such that the coefficients of the polynomial f(X) = ao[];_,(X —
o) are rational integers with ged 1. In particular, M(z/y) = max(|z|, |y|)
for z,y € Z with ged(z,y) = 1. Nowlet k =2+ 6 with0 < 6 < 1, and @ an
algebraic number of degree r. Bombieri and van der Poorten proved that (1.1)
has at most

_ logr
c1 -6 %(logr)?log (%)
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solutions with M (z/y) > coM(a) and at most
367 log (1 + log M(a))

solutions with M(z/y) < caM(a), where ¢;,¢2,c3 are explicitly computable
absolute constants. We mention that recently Schmidt [21] gave an explicit
upper bound for the number of solutions of (1.1) in the complementary case
k>3

We deal with the analogue of (1.1) in which the unknowns are algebraic
numbers of given degree, i.e. we consider the inequality

loe — €] < M(€)™" in algebraic numbers £ of degree t, (1.2)

where « is an algebraic number, x a positive real, and ¢ > 1. In 1921, Siegel
[22], [23] showed that (1.2) has only finitely many solutions if x exceeds some
bound depending on ¢ and the degree of a. In 1966, Ramachandra [14] proved
the same with a smaller lower bound for &, but still depending on the degree
of a. In 1971, Wirsing [24] succeeded in proving Roth’s conjecture that (1.2)
has only finitely many solutions if

K> 2t. (1.3)

Independently, Schmidt [17] (Theorem 3) proved that the number of solutions
of (1.2) is finite if
K>t+1. (1.4)

In fact, the latter can be derived from Schmidt’s Subspace theorem, cf. [19], p.
278. The lower bound ¢ + 1 can be shown to be best possible.

It is our purpose to derive an explicit upper bound for the number of
solutions of (1.2). For this, one needs, apart from the Diophantine approxima-
tion arguments of Wirsing or Schmidt in an explicit form, a “gap principle,”
which states that solutions of (1.2) are far away from each other. In §2 we
derive a simple gap principle for k > 2t which is similar to one which appeared
already in Ramachandra’s paper [14]. The proof of this gap principle uses a
Liouville-type inequality for differences of algebraic numbers. For obtaining a
gap principle for t + 1 < K < 2t one would need an effective improvement of
this Liouville-type inequality which, if existing, seems to be very difficult to
prove.

We derive an upper bound for the number of solutions of (1.2) with x >
2t by combining the gap principle in §2 with Wirsing’s arguments. Another
possible approach is to use ideas which are used in the proof of the quantitative
Subspace theorem, e.g., in [20] or [6], but this would lead to a larger bound.
One of Wirsing’s main tools was Leveque’s generalization of Roth’s lemma to
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number fields ([10], Chap. 4). Instead, we use the sharpening of this from {5].
Our result is as follows:

Theorem 1 Let o be an algebraic number of degree r, t an integer > 1, and
K=2t+6 with0 <6< 1.
(i). (1.2} has at most

2x107 - ¢t7674 - log 4r - log log 4r

solutions £ with M(£) > max (4:¢+1/8 M(a)).
(%). (1.2) has at most

2043751 1og(2 4 671) + 2671 - loglog 4M ()

solutions & with M(§) < max (4:¢+1/8 M(a)).

We derive a result more general than Theorem 1. For every algebraic
number ¢ of degree ¢t we fix an ordering of its conjugates £, ... €M) Let
a@1,...,0 be algebraic numbers. Further, let ¢4, ..., p: be non-negative reals.
We introduce the notation

|z, y| := max(|z|, |y|) for z,y € C.

Consider the system of inequalities

| — £ e (;
_— <M #i =1,...,t
2|1,az‘| . |1,€(z)| - (5) (7' s ’ )

in algebraic numbers £ of degree t. (1.5)

The denominators have been inserted for technical convenience. Wirsing [24]
proved that (1.5) has only finitely many solutions if

max (#1)?(Y_ ") > 2, (16)

iel

where the maximum is taken over all non-empty subsets I of {¢ € {1,...,t}: ¢;
# 0} and where # is used to denote the cardinality of a set. In [24], §3, Wirsing
showed that

L1\l maxy (DA Serei)
(Cgm) st < 17)

j=1

for all non-negative reals 1, ..., ¢; with ¢1 +--- 4+ ¢ > 0, and that the upper
and lower bound are best possible. In fact, the upper bound is assumed if and
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only if all non-zero numbers among ¢y, ..., ¢; are equal. So condition (1.6) is
in general stronger than

QL+ > 2t (1.8)

We prove the following quantitative version of Wirsing’s result:

Theorem 2 Let ay,...,q; be algebraic numbers with
iinaxtM(ai)=M, [Qaa,...,¢) : Q=7 (1.9)
and @1, ..., Pt non-negative reals for which
max(#1)*(Y_¢r") T 22+ 6 with0 <6< 1. (1.10)
! i€l ' -

Put K := @1+ + ¢4
(1). (1.5) has at most

2x107 - t7674 . log 4r - log log 4r

solutions with M(£) > max (4t(t+1)/(~-2t), M).
(#). (1.5) has at most

gt +t+ntd (1 n log(2 + ﬁ)) ‘. log log 4M
log(1 + 552) log(1 + 552t)

solutions & with M(€) < max (4:(t+D/(x=20) © pr),

It is due to a limitation of Wirsing’s method that we have to impose
condition (1.6) on 1, ...,¢:. In §2, we shall derive a gap principle for system
(1.5) which is non-trivial if the weaker condition (1.8) holds. It is conceivable
that by combining this gap principle with techniques used in the proof of the
quantitative Subspace theorem, one can derive an explicit (but larger) upper
bound for the number of solutions of (1.5) with (1.8) replacing (1.6).

Theorem 1 follows at once from Theorem 2 with a; = o, 91 = k and
a; = 0, p; = 0 for i = 2,...,t, on observing that in that case we have
maxy (#I)Z(Eielcpi_l)d =K, k—2t=6<1, and log(l + (v — 2t)/t) =
log (1+6/t) = 6/2t.

Another application of Theorem 2 is to an inequality involving resultants.
The resultant R(f,g) of two polynomials f(X) = aoX™ + a1 X" 1 +--- + a,
and g(X) = bpX? + by X! + .- + b, with ap # 0, by # 0 is defined by the
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determinant of order r + ¢,

ao 0'1 e . ar
ao al .. P ar
a’O al P .. aT
R(f,g)=b0 b1 - b : (1.11)
bo by - b
bo by --- b

of which the first ¢ rows consist of coefficients of f and the last r rows of
coefficients of g. If f(X) = ao[],_;(X — ;) and g(X) = bo HJ (X —&;), then

R(f,g) = akb} HH(az DE (1.12)

i=1j=1

Hence R(f,g) = 0 if and only if f and g have a common zero (cf. [9], Chap. V,
§10).

We define the Mahler measure of a polynomial f(X) = ao [[;_(X — o) €
ClX] by

M(f) = |a| [ T max(1,}al) .
=1

We fix a polynomial f(X) € Z[X] of degree r and a positive real x and consider
the inequality in unknown polynomials g,

0 <|R(f,9)| < M(g)"™"
in polynomials g(X) € Z|X] of degree t. (1.13)

In [24], Wirsing proved that (1.13) has only finitely many solutions if f has no
multiple zeros and if

1 1
R>2t(1+§+"'+2t—_1>. (114)

Schmidt [18] showed that (1.14) can be relaxed to
K>2t (1.15)

if f has no multiple zeros and no irreducible factors in Z[X] of degree < t.
Finally, from a result of Ru and Wong ([16], Thm. 4.1}, which is a consequence
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of the Subspace theorem, it follows that (1.14) can be relaxed to (1.15) for
every polynomial f without multiple zeros.

In contrast to Wirsing et al. who obtained their results on (1.13) for
arbitrary polynomials g, we are only able to determine an upper bound for the
number of irreducible polynomials g satisfying (1.13). We obtain this bound
by reducing (1.13) to a finite number of systems of inequalities (1.5) to which
we apply Theorem 2. We have to impose condition (1.14) on & because of
condition (1.10) in Theorem 2.

A polynomial in Z[X] is said to be primitive if its coeflicients have ged 1.

Theorem 3 Let f be a primitive polynomial in Z[X] of degree r with no
maultiple zeros. Suppose that

n=(2t+6)(1+%+~~+ﬁ) with 0 < § < 1. (1.16)

Then there are at most
101%(6~1)t*3 . (100r)t log 4r - log log 4r
primitive, irreducible polynomials g(X) € Z[X] of degree t with
0 < |R(f,9)| < M(f)"- M(g)"™", (1.17)

M(g) > (28r2tM(f)4(r—1)t)6_1(1+§+~~+ 71)7! . (1.18)

In (1.17), we have inserted the factor M(f)* to make the inequality homoge-
neous in f; without this factor, our bound would not have been better.

2. A gap principle In this section, we derive a gap principle for the system

(1.5) of inequalities in the case where ay,...,q; are algebraic numbers, and
¥1,-- -, are reals with
p;>0fori=1,...,8 K:=¢p1+- -+ > 2L (2.1)

After that, we prove part (ii) of Theorem 2. Our gap principle is as follows:

Lemma 1 (). Let &,..., 41 be distinct solutions of (1.5) with M (€¢41) >
M(&) > - > M(&). Then

U M(£11) = (U M(€)) 78 where U = 28+ D/(=20)  (2.9)

(ii). Put C :=[t 20 F"+1]. Let &,...,Ecq1 be distinct solutions of (1.5) with
M(c+1) 2 M(éc) = -+ 2 M(&1). Then

2M (Eca1) = (2M(E0) T (2.3)
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Proof The assertion (i): Since solutions of (1.5) are assumed to have degree
t, at least two numbers among &;,...,&+1 are not conjugate to each other,
€ =&, n = § with i < j, say. Denote the minimal polynomials (in Z[X]
with coefficients having gcd 1) of &,n by f, g, respectively. Then f and g
have no common zeros, i.e., their resultant R(f,g) is a non-zero integer. Let
F(X) = ao[They (X — €8, g(X) = bo[[}—1(X = n®). Then by (1.12) (on
noting that ag, by are cancelled) we have

6% — 1)

RGO (i
MEFM@m? HUHW (2.4)

and since R(f, g) is a non-zero integer, this implies the Liouville-type inequality,

e e® —p® 1
T gy oo 2 . 23)
s e 1LEB]- 1,00 = M€ M(n)*
We estimate the left-hand side from above. For k # [ we use the trivial estimate

£® — )]

b T <9, 2.6
1,691 1,7®O] = (29)

Let k =1 € {1,...,t}. We apply the following variation on the triangle in-
equality:

o=yl -2 |-yl

< for z,y,z € C. 2.7
Lol Lyl ~ Ll L2l | e L 20
Thus, using that £, satisfy (1.5),

€®) — n®)| [6®) — In®) — a

<
|1a€(k)| ' |1a77(k)| - llvg(k” ' Ilaakl * I].,’l’](k)l : 117ak|
< 2M(E) P +2M(n) ™% < AM() ™" .

Together with (2.5), (2.6) this implies

1

MGy S 2 MO S UsEMEO™, (28)

whence Lt (r-20)/t
U= M(n) > (U M(E)) .

Together with M (£;) < M(£) < M(n) < M(&;41) this implies (2.2).
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The assertion (ii}: Let p be a prime number which will be chosen later.
We partition the solutions of (1.5) into equivalence classes as follows. Let ¢
and 7 be solutions of (1.5) with minimal polynomials f, g, respectively. By
definition, both f and g have t 41 integer coeflicients without a common factor.
We call £, 1 equivalent if there is an integer A, not divisible by p, such that
(f — Ag)/p has its coeflicients in Z, in other words, if the reductions modulo p
of the vectors of coeflicients of f, g, respectively, represent the same point in
the t-dimensional projective space IP*(F,). Clearly, the number of equivalence
classes is at most the number of points in P*(F,), which is

pt+1_1
p—1

<2pt. (2.9)

Now for equivalent £, 1 with minimal polynomials f, g and with A as above
we have, by (1.11), that

R(f,9) = R(f — Ag,9) = p'R((f — Ag)/p,g) =0 (mod p"). (2.10)
Choose p such that 2¢=1+%/t < p < 2t+%/t Then by (2.9), the number of equiv-
alence classes is at most 2pt < gt*+r+l Qo among the solutions &;,...,80+1

there must be at least ¢t + 1 belonging to the same equivalence class. Among
these t + 1 solutions we can choose two, § := & and 7 := §;, say, with i < j,
which are not conjugate to each other. Now if f, g are the minimal polynomials
of £, m, then in view of (2.4), (2.10), we can replace (2.5) by

ﬁ li[ |e®) — p®) S p . gt?—t+
o ILEB] 11,90 = M(€)*M(n)t — M(§)M(n)*

By repeating the argument of (i) we obtain instead of (2.8),
2t —t+w 2+t (P14 +pr) . ot*+t
_____$2 M§—<p1 TTe) = 9 M&-—n
M@ My © ©

and so
2M(n) > (2M ()"

Together with M (&) < M (&) < M(n) < M(£c+1), this implies (2.3).
We need the following simple consequence of Lemma 1:

Lemma 2 (i). Let A, B be reals with B> A > U? = 4t¢+D/(v=2) " Then the
number of solutions & of (1.5) with A < M(¢) < B is at most

log(2log B/ log A)
e (14 fog(1+ (% = 2t)/t)) :
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(i1). Let A, B be reals with B > A > 1. Then the number of solutions ¢ of (1.5)
with A < M(€) < B is at most

log(log2B/log2A)
c- (1 + log(1+ (x — 2t)/t)) '

Proof The assertion (i): Put 6 := 14 (k — 2t)/t. Let k be the smallest integer
with .

U-4)” >v-'B.
Part (i) of Lemma 1 implies that for each ¢ € {0,...,k — 1}, (1.5) has at most
¢ solutions £ with (U~1A)?" < U-1M(¢) < (U"*4)?"". Hence (1.5) has at
most ¢ - k solutions with A < M(£) < B. Now part (i) follows since in view of
our assumption A > U? we have

4 log(logU~'B/log U1 A)

log(2log B/ log A)
log 8 '

<
L+ log 8

k<1
The assertion (ii): Use part (ii) of Lemma 1 and repeat the argument given

above with 2 replacing U~! and C - k replacing t - k.

Proof of part (i) of Theorem 2 Put 0 := 1+ (x — 2t)/t. We first estimate the
number of solutions £ of (1.5) with

gD/ (=28 < M(€) < max(4PEHD/(5=20) pr), (2.11)

Assuming that M > 44t+1)/(x=2t) ' we infer from part (i) of Lemma 2 that this
number is at most

log (21log M/%f_izlt2 log 4) log(8log M)
t'(1+ log 6 )St'(lﬂl_ log @ )
loglogd4M
<t (2 + _—10_g—9_) . (2.12)

This is clearly also true if M < 4t(t+1)/(x=2t)
We now estimate the number of solutions £ of (1.5) with

M(f) < 4t(t+1)/(n—2t)'

From part (ii) of Lemma 2 with A = 1, B = 4t¢+1/{x=2) jt follows that this
number is at most

2t(t+1
log(1 + J&#)

t.ot+etl (4
(1+ log6
log(2 + -N_IW))

Cotir+l .
<t-2 3log (2t(t +1)) - (1+ ogt
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Together with (2.12) this implies that the total number of solutions of (1.5)
with
M(E) < max(4t(t+1)/(n—2t),M)

is at most

gt +t+r+d (1 " log(2 + ﬁ)) loglog4M
log 6 log 8

which is precisely the upper bound in part (ii) of Theorem 2.

3. Construction of the auxiliary polynomial For an algebraic number
¢ we put
1€l := max(l¢™],...., 1¢")),

where £, ..., £ are the conjugates of ¢ over Q. More generally, for a vector
x := (£1,...,€r) with algebraic coordinates we put
x| == max(}| &1 1], .., I€r 1) -

The ring of integers of an algebraic number field K (assumed to be contained
in C) is denoted by Og. We need the following consequence of Siegel’s lemma:

Lemma 3 Let K be an algebraic number field of degree r. Further, let R, S
be rational integers with

0<S<R, rS>(r—-1)R, (3.1)
let A be a positive real and let ay,...,ag € K& be K-linearly independent
vectors for which there are rational integers qi,...,qs with

0<¢ <A, gacOg, |lgal<Afori=1,...,85. (3.2)

Then there are 34,...,Bs € Ok such that

S
x:=)Y pa; € ZF\{0}, (3.3)
i=1
x| <{C(K) - SA} ===, (3.4)
18] <{C(K)- SA}™=-DF fori=1,...,8, (3.5)

where C(K) is a constant depending only on K.

Proof Lemma 3 may be proved by applying a sophisticated version of Siegel’s
lemma of Bombieri-Vaaler type, but then some extra work must be done to get
a good upper bound for the numbers |3;|. Instead, we give a direct proof of
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Lemma 3, following Wirsing [24]. C1(K), C2(K), ... denote constants depend-
ing only on K.
Put a} := g;a; for i = 1,..., 5. We search for i, ..., 85 € Ok such that

X = Z Bial € Z®\{0} . (3.6)
Then (3.3) holds with
Bi=qfifori=1,...,8. 3.7
Let {w1,...,wr} be a Z-basis of Og with w; = 1. We can express a € Ok as
a=)Y zw; withz; €Z, || < Ci(K)||e|| fori=1,...,m; (3.8)
i=1
the upper bounds for |z;| follow by taking conjugates and solving z,,...,z,
from the system of linear equations o) = 37_, zw® (j =1,...,7), using

Cramer’s rule. Now we have
T
aj =) wjb;; withb;; € ZR fori=1,...,8,j=1,...,r, (3.9)
j=1

ks
Bl =Y wpzip with zixp € Zfori=1,...,5, k=1,...,r. (3.10)
k=1

Define the rational integers u;x by

.
wiwg = Eujklwl for j,ke {1,...,7}.

I=1
Then we obtain
S r
Zﬁ,aq, Z Z Zw]wkzzksz
i=1 j=1k=1
S r
= Zwl{ ZZ Z,’kcikl} with ¢k := Z;=1 ujklbij € ZE, (3.11)
=1 i=1 k=1

By (3.8), (3.2) we have

”sz ” < 02(K)“a;” < 02(K)A for i = 11""57 J=1...,m (312)
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so
e || £Cs(K)Afori=1,...,8, k=1,...,r, [=1,...,r. (3.13)

Recalling that w; = 1, we infer that Ef:l ‘al € Z® if and only if the coeffi-
cients of wa,...,w, in (3.11) are 0, i.e.,

S r
SN zikci=0forl=2,...,r. (3.14)

i=1 k=1

Since the vectors c;i; have R coordinates, (3.14) is a system of R(r — 1) equa-~
tions in Sr unknowns. Since Sr > R(r — 1), we have by the most basic form of
Siegel’s lemma (cf. [19], p. 127), that system (3.14) has a non-trivial solution
in integers z;; with

R(r—1
Sr—R(r—1)
max |zg| < {7'5’ - max || ikt ||}
i,k 1,k,l

SA}'S%%—'_]‘LI’

(3.15)

< {04(K) : by (3.13).

By (3.14) we have that x := Ele ‘a) is equal to the coefficient of w; = 1 in

(3.11), i.e.,
S r
X = Zzzikclkl .

i=1 k=1
Together with (3.15) and (3.13) this implies

x|l < Sr- (Hﬁxizzu) (II}C?ZX”CW ”)
< (o) 84) T (k) 54) T

Moreover, (3.10) and (3.15) imply

R(r—1)

|ﬂ:| < CG(K){C'4(K) . SA}_Sr—R(r_—l)
and so, by (3.7),

Sr
Sr—R(r—1)

18] = laillBl] < AlB]| < (Cn(K) - 54) fori=1,..,5.

This completes the proof of Lemma 3.
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Let ay,...,a; be the algebraic numbers from Theorem 2 and put K :=
Q(o,...,04). Asin (1.9), let M = max;=1, . M(o), 7 = [K : Q]. Let
i, - - - yY¢ be non-negative real numbers with y1+---+v = 1. Fori =0,1,2,...
we define the polynomial of degree ¢,

pi(X) = (X — 01)1 O . (X — o)),

with ji(3) = [y i for il =1,...,t ~ 1, and j;(3) = ¢ — f;}['yl -4]. (3.16)

Let k,d1,...,d; be positive integers and put
Ik={0,...,d1} X e X {0,...,dk} .

By i we denote a tuple (41,...,4k) € Zx. For a polynomial P with integer
coeflicients, we denote by || P|| the maximum of the absolute values of its
coefficients. The next lemma gives our auxiliary polynomial:

Lemma 4 Assume that

odi+--+di

@+ @t = C(K) (3.17)

where C(K') is the constant from Lemma 3. Let T be a subset of Ij, with
1
#I < Z(dl +1)---(dg+1) . (3.18)
Then there are i € Ok for i € Ti\T such that

P(X1,..., Xe) = Y Bipu(X1) - piy (Xi)

i€ \T
€ Z[Xy,..., Xi M0},  (3.19)
| Pl < (ap)>r O+ (3.20)
1Bi] < (4M)Z AT HW) for i e TN (3.21)

Proof Let i > 0. Then
p,(X) = (X - ail) e (X - aii) with Qi1y-..,04; € {al, e ,at}.

Let ¢;; € Z>o be the leading coefficient of the minimal polynomial of a;;.
Clearly, by (1.9) we have

@i < M(ay5) < M, gijllouj || < M(aij) <M . (3.22)
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The coefficient of XJ' - -X,’c"‘ in p;, (X1) - - pi, (Xi) is equal to
k
ai,j)== H Z H WXipln (3.23)
h=1 S, l,€Sh

where for h = 1,...,k, the sum is taken over all subsets S, of {1,...,i,} of
cardinality i, — ji. Define the rational integer

q(i,j) —Hquh,]-
h=1j=1

By (3.23) we have ¢(i,j)a(i, j) € Ok and by (3.23), (3.22) we have

q(i,j) < MA+t (3.24)
g et i) |<H( iy

We apply Lemma 3 with R = (d1 +1)---(dx +1),S = R — #T and

)M”+ e < (2M)d1+ +di
h

{a1,... a5} = {pi (X1) - - s, (X)) 11 € TL\T}.

The assertion (3.18) implies condition (3.1); and (3.24) implies (3.2) with A =
(2M)%1++dk . Note that by (3.17) we have

C(K)-SA<C(K)dy +1) - (dp + 1)A < (4M)D+-+dx
and that by (3.18) we have Sr > (r — )R, whence

1
Sr <(r 2)R<2'r.
Sr—R(r-1)~ iR

Together with Lemma 3 this implies at once that there are G; (i € Zx\Z) with
(3.19)-(3.21).

4. Combinatorial lemmas We will have to estimate the values of the
auxiliary polynomial constructed in §3 in certain points and for this purpose
we need some combinatorial lemmas. We use the arguments from elementary
probability theory introduced by Wirsing [24], except that we obtain better
estimates by using the following lemma instead of Chebyshev’s inequality:

Lemma 5 Let Xy,..., X, be mutually independent random variables on some
probability space with probability measure P, such that fori=1,...,k, X; has
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expectation p; and P(X; € [0,1]) = 1. Let p:= py +-- -+ pi and let € be a real
with 0 < € <2/3. Then

P(X1++Xp—p|>ek) <2 k3 (e=27182..). (41)
Proof Clearly, (4.1) follows from

P(Xi+ -+ Xi — p > k) < eH/3 (42)
P(Xy 4+ Xg —p < —ek) < e™H3 (4.3)

and (4.3) follows from (4.2) by replacing X; by 1 — X;, p; by 1 — p; in (4.2) for
i=1,...,k. So it suffices to prove (4.2).

For i = 1,...,k, denote by a? the variance of X, i.e., the expectation
of (X; — u;)?; since P(X; € [0,1]) = 1 this variance exists and is < 1. Put
s2:= 3% 2. We may assume that s > 0 since otherwise P(X; = p;) = 1
for i = 1,...,t and we are done. By the inequality at the bottom of p. 267,
Section 19 of Lodve [11] we have

P(X1+"'+Xk—ﬂ

2
. Ze’) Sexp(—te’+t—(1+t—c)) fore >0, (4.4)

2 2

where ¢ is such that P(|(X; — u;)/s| <¢)=1fori=1,...,k and ¢t is any real
with 0 <t < c¢~!. (Loéve uses the notation S’ for (X1 +--- + Xy — u)/s). We
apply (4.4) with € = ke/s, ¢ = 1/s and t = es. Then the right-hand side of
(4.4) becomes

e2s?

exp ( -k + —2—(1 + %)) < exp (—€k/3)

since s> < k, 0 < € < 2/3. This implies (4.2).
Let € be a real and let k,t,ds,...,d; be positive integers with
0<e<— (45)
6t ’ ’

4
dh>lg— forh=1,...,k. (4.6)

Define the sets
T, ={0,...,d1} x --- x{0,...,dg},
Ck={1,...,t}k.

We will use i to denote a tuple (¢1,...,ix) € Iy and c to denote a tuple
(Cl, N ,ck) € Cy.
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Lemma 6 There is a subset T of I with
#T < 24e Le R4 dy 4+ 1)+ (di +1)

such that for alli € TH\T and all z € [0,1] we have

‘#{he {1,....k}: Zzt‘h,; Sm}—km‘ <ek .

Proof For z € [0,1], i € I we put s(i,z) := #{h € {1,...,k} : in/dp <
z}. We endow I, with the probability measure P such that each tuple i =
(i1,...,%%) € Iy has probability 1/#7Z) = 1/(dy +1)---(dx +1). Fix z € [0, 1].
For h = 1,...,k, define the random variable X = X (i) on Iy by X, = 1 if
0 <ipfdp <z and Xp =0if z <ip/dy, <1. Thus, Xj,..., X} are mutually
independent and X}, has expectation up = P(Xp = 1) = ([zdp] + 1)/(dp + 1)
for h=1,...,k. By Lemma 5 with (0.9 — 10~*)e replacing ¢ we have

P(IX1 4+ X — (i + -+ )| > (0.9~ 1074)ek) < 2e7K/4

By (4.6) we have

|[zdp] + 1 — zdp, — z| < 1

107% forh=1,... k.
dn + 1 Sgiyr S0 et v

|pn — x| =

Hence )
P(I X1 + -+ X — kz| > 0.9¢k) < 2e~€ #/4
This implies that for each fixed z € [0, 1] there exists a subset Z(z) of Z) with
|s(i,z) — kz| < 0.9k for i € Tp\I(z), #I(z) < 2e~*/4 .

Now let n = [10/€] + 1 and take

Then ) )
H#T < 2n+1)e ¥4 < 2de e H/4,

Let z € [0,1] and choose m € {0,...,n—1} with m/n <z < (m+1)/n. Then
for i € Ti\T = N, _o(Zk\Z(%)) we have

m+1 m+1
n

s(i, z) < s(i, - ) < k( +0.9¢) < k(z + % +0.9¢) < k(z +¢),

m m 1
i) > s(i,—) > k(— —0.9¢) > k(z — = — 0.9¢) > k(z —
s(x,x)_s(l,n)_k(n 0.9¢) > k(x - 0.9¢) > k(x —¢€),
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which is what we wanted to prove.

Lemma 7 Let T be the set from Lemma 6. Then forie Ti\Z, h=1,...,k
we have

In(h) _ E| <e
dr(h) kl— 7’
where © is the permutation of (1,...,k) such that
W) . bR
dry = 7 dar)

Proof Fixie It\Z, h € {1,...,k} and put  := ir()/drn). By definition,
the number of integers j with j € {1,...,k}, i;/d; < x is equal to h. Lemma
6 implies that |h — kz| < ek. This implies Lemma 7.

Lemma 8 There is a subset C of C, with
H#C < e~ K3 4k

such that for each ¢ € Cx\C, c € {1,...,t} we have
’#{he{l,...,k}: ck=c}—§’§ek. (4.7)

Proof Lemma 8 follows once we have proved that for each ¢ € {1,...,¢} there
is a subset C(© of C;, with #C(© < 2e—<"k/3tk such that for each ¢ € Ck\C(c)
we have (4.7). We endow Cj with the probability measure P such that each
¢ = (c1,..-,¢k) € C has probability 1/#C, = 1/t*. Fix c € {1,...,t}. For
h =1,...,k, define the random variable X = Xp(c)onCx by X =1lifcp =c
and X = 0if ¢ # c. Then X;,..., X} are mutually independent and X}, has
expectation 1/t for h=1,...,k. Now by Lemma 5 we have

#leec:[#{het, ...k} ck=c}_§

> ek} 7k
k
= P(IX1 4+ X — 7| > k) < 2e~<k/3
which is what we wanted to prove.

The next lemma. is the main result of this section:

Lemma 9 Let ¢y,...,p: be non-negative reals satisfying (1.10), and let € be
a real and k,t,dy, ..., dy integers satisfying (4.5), (4.6). Then there are subsets
TofZy ={0,...,d1} x -+ x {0,...,dx} and C of Ct, = {1,...,t}* with
#T < 24 1eF4  (dy +1) - (dk + 1), (4.8)
#C < 2te~<H/3 ¢k (4.9)
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and non-negative reals vy1,...,v with y1 +---+ v = 1, such that for all tuples
i€ Z\Z, c € C,\C we have

k.

h k 3ek
> e 2 (gm — ) (2+6). (410)
h=1

Remark The lower bound of (4.10) cannot be improved by another choice of

2 EEEEEN:
Proof We prove Lemma 9 with the sets Z from Lemmas 6 and and C from

Lemma 8. These sets satisfy (4.8), (4.9), respectively. By (1.10), there is a
subset I of {1,...,t} such that (#I)*( 3¢, w;l)_l > 2t + 8. Choose

vi:=0 forie{l,...,t]\I, % :=<pi_1/(2goj_1)’l foriel.
jel

Then (4.10) follows once we have proved that for every i = (41,...,4) € Tp\Z,
c=(c,...,c) € Ck\C,

Z dh (2t2 3;k)(#1) (4.11)

h: ch€l

Fixie H\Z,c € C,\C. Let T:= #{h € {1,...,k}: cp € I} and let w be a
permutation of (1,...,k) such that ir)/dry < - <ink)/dnk)- By Lemma
8 and Lemma 7, respectively, we have

(#I)k(—tl——e)STs(#I)k(%+e —eforh=1,...,k

-y
2
Z
v

x| >

Hence

k 3¢k
- 2k 22 ; )(#I)

where we used that € < 1 by (4.5) and #I < (#I)2. This proves (4.11).

5. Estimation of certain values of the auxiliary polynomial Let

k?(#1)2(——e) —ek( + eI > (

aji,..., a; be the algebraic numbers and ¢4,...,¢; the reals from Theorem
2. Thus, max(#I)*(Y,c; 9717 > 2+ 6 with 0 < § < 1. Define
)
€= W y (51)

k=[35x10* t*67%(1 + S logt)(1 + 5 log671) log4r], (5.2)
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and let dy,...,d; be integers satisfying

10%¢
dy>dy>---2di > max(—E-,C(K)) (5.3)

where C(K) is the constant from Lemma 3. Thus, (4.5) and (4.6) are satisfied
and Lemma 9 is applicable. Let Z and C be the sets, and v;,...,~; the reals
from Lemma 9. Then

1
#1 < Z(d1+1)--~(dt+1) ) (5.4)
#C < te-tF . (5.5)
That is, (5.4) and (5.5) follow from (4.8), (4.9) and the inequalities

246_16_’“2/4 < i

<go ote~ke’/3 < te,

and these inequalities hold true since by (5.1), (5.2) we have
max (45'2 log ﬁ, 3¢ 2log g)
€ €
= 4624t46‘2(10g 1632 + 2logt + log 6! + log r)
<35x10% - t*672(1+ Llogt) (1 + Llogé~ ) logdr —1 < k.

We apply Lemma 4 with these k,dy,...,dr, Z and ~q,...,7; this is possible
since (5.3) and (5.4) imply the conditions (3.17) and (3.18) of Lemma 4. Let
P be the auxiliary polynomial from Lemma 4, i.e.,

P(Xy,.. ., Xe) = Y Bipin(X1) - pi(Xk) (5.6)
i€ \T

where for ¢ = 1,2,... p;(X) is given by (3.16). Further, let &;,...,&; be
solutions of (1.5) with

M(&) > (6M)68t2(2r+t)/6 : (5.7)
M(&)% < M(&)™ < M(€)2+) for h=1,... k. (5.8)
For a polynomial in k variables X7, ..., X} and a tuple of non-negative integers

j=(1,.-.,jk) define the differential operator

1 oI+t

D= ——— . .
VALERRN 1D CLERRY:). ¢

Y
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note that DI maps polynomials with coefficients in Z to polynomials with
coefficients in Z. We need the following estimate:

Lemma 10 (i). For each tuple ¢ = (cy,...,cx) € Ck\C and for each tuple of
non-negative integers j = (j1,...,Jjx) with

ko,
jn €k
g <7 (5.9)
we have
IDIP(E™, ... €7)] <(6M)Er+otd+da ( H 1,6 )-

‘(M(&) 1)—(2t+6)({k/2t2}—5ke/t) . (5.10)

(ii). For each tuple ¢ € C, and each tuple of non-negative integers j we have

leP(dCl)’ . (Ck))l < (6M)(2r+t)(d1+ +dx) ( H |1 §(Ch)|dh) (5‘11)
h=1

Proof In addition to the hypotheses made above we assume that
0Ly <2t+éforl=1,...,1. (5.12)

This is no loss of generality. That is, suppose that for instance ¢, > 2t + 6.
Then &1, ..., & satisfy (1.5) with ¢; =2t +6 and ¢, =0for I =2,...,t. Then
these new (; satisfy (1.10) and we can prove Lemma 10 with these new (.

For every non-negative integer j we define the differential operator for
polynomials in one variable X, D’ = (1/3!)d’ /dX3. Then for each i >0, j > 0
we have

Dip(X) = DI([[(X @) = " H( V) - ayno-s
=1

0<5;<4;(3) l=1
Jrt+e--+ae=id

For h € {1,...,k}, c€ {1,...,t} we have by (1.5),
loe — €671 < 211, ] - 1, €] - M(8n) 74 (5.13)
and, trivially,

lou = 671 < 21,04 11,607 for L =1, 2. (5.14)
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Further, by (3.16) we have that p;(X) = [[i_,(X — a;)®®) where the j;(4) are
non-negative integers with

t
S a) =4, H@)=wi-1 forl=1,...,1
=1

Together with (5.8) and (5.12) these imply
[D7pi(e})

> H(Jz(t)) 21, 0q] - |1, £ )OI g (g, ) e e =3)

0<5;<5;(3) I=1
Jit+-+ap=3

< (4Mt]1,£}(:i)])i X M(gh)—%¢c'i+<ﬂc(j+1)
) _ . &2 .
S (4Mt|1’€)(7,6)|)z . (M(gl)dl) Yope(t/dn)+(1+€”)(2t+8) (G +1)/dn . (515)
We now use Lemma 9. Let ¢ = (c1,...,¢x) € C\C, 1 = (41,...,%) € Ti\Z,

and j = (j1,..-,J%) a tuple of non-negative integers satisfying (5.9). Then by
(5.15) we have

k
D3 T pin ()] < AB(M(g1)*) ™C

h=1

with 4 = (4Mt)d1+ +d; B Hh,_lll €(Ch)idh and

k . k. k
h Ih 1
We have
k
3ek
2 d ’Ych()och 2 (2t+5)(@ - T) by Lemma 9,

(1+€2)(§k:L Ekjl < Xk by (5.9), (5.1), (5.3);
dn d t i
h=1 h=1

hence
5¢k

w5 )
Now (5.6) and the estimates for 8; in Lemma 4 give

C>(2t+6)(

IDSP(EL, ..., el < AB(M(&)*) ™
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with
A’ :A( 3 lﬂal)
i€ \T
< (4Mt)d1+~..+dk . 2d1+...+dk(4M)2r(d1+...+dk)

S (6M)(27‘+t) (d1 ++dk) .

This proves part (i) of Lemma 10. We obtain part (ii) by observing that, as a
consequence of (5.14), we can replace (5.15) by the trivial estimate | D pi(ﬁ,(lc) )

< (4M t|l,§,(f)l)i and so all estimates made above remain valid if we replace
the exponent —C on M (&;)% by 0.

Lemma 11 Suppose that €, k,dq, ..., dy satisfy (5.1)-(5.3) and that &, ..., &
are solutions of (1.5) satisfying (5.7) and (5.8). Let P be the polynomial from
Lemma 4, with the set T and the reals v1, ..., from Lemma 9. Then there is a
tuple c = (c1,...,cx) € Ck = {1,...,t}* such that for each tuple j = (j1,. .., jk)
of non-negative integers with mel Jn/dn < €kt we have

DipEl el =0 . (5.16)

Proof We assume the contrary. Let L be the normal extension of QQ generated
by the numbers {,(lc) (h =1,...,k, ¢ = 1,...,t). We call two tuples ¢ =
(c1y.--5¢k), ¢ = (ch,...,¢;) € Cr conjugate if there is an Q-automorphism
of L mapping the ordered tuple (§§°‘), 8y o (é‘icll), ey t(c;)). From our
assumption, it follows that for every ¢ € Cj, there is a tuple jo with (5.9) such
that Die P(e{®), ... ¢{*)) # 0. Since P has its coefficients in Z, there is no
loss of generality in assuming that jo = jo- whenever ¢ and ¢’ are conjugate.
For h = 1,...,k, let g, € Z-o denote the leading coefficient of the minimal
polynomial of &,. Define the number

k=1 . t
7 = (qillqgk) H D"CP(giq)a""gwgc )) .
c€Cy

Then Z # 0. We will obtain a contradiction by showing that Z € Z and
|Z| < 1.

We first show that Z € Z. Since for conjugate tuples ¢, ¢’ we have
jec = Jjer, the number Z is invariant under automorphisms of L, i.e. Z € Q.
Denote the fractional ideal with respect to the ring of integers of L generated
by p1,...,4m € L by (p1,. .., ttm). For ¢ € C; we have

Dip(e), ..., ey e (1,el)h . (1, ¢{H)) (5.17)

since the polynomial DieP has its coefficients in Z and has degree < dj in
Xp. The minimal polynomial of &, is gy Htc=1(X — f,(lc)). The coefficients of
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this polynomial are integers with gcd 1. On the other hand, by Gauss’ lemma
for fractional ideals in number fields, the 1deal generated by the coefficients of

this polynomial is equal to g szl(l ) therefore, gn [T'_, (1, §(°)) = (1).
Together with (5.17) this implies

k- c
Zc (qtli ) qgk)t 1( H (1’£§c1))d1 (1’£’£ k))dk)
c€Cy

k—l

(H{ths‘” LEM*) =).

Hence Z € Z.
We now show that |Z| < 1. Lemma 10 gives

-c
1Z| < A1By(M(&)1) ™",
with
Ay = (BM)@rH0ldir+dott

= @) I (H ) - (TTaren®)”
ceC,  h=1 h=1
O1 = (HC\O) - (2t + D)5y — o}

Further,

Ay < (6M)Fr+0kttd by (5 3)

By < M(&)F T H 0+ 1y (5.8),

Ci > (1 - et)th(2t + 6){2’:2 5;'“}

= kth1.(1 - at)(52 —5¢)(2t + 6) by (5.5).
Therefore,
121 < (abriey )",

with

Az — (6M)t(2'r+t) ,

Co=-(1+)+(1- et)(—l— —5¢) (2t + 6)

—E—llet——e6+106t + 5¢%t8 — €2 >§—-§—etsmce6<t
)
> — by (51).

~ 68t
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Together with (5.7) this implies that |Z| < 1.

6. Completion of the proof of part (i) of Theorem 2 We apply Lemma
12 below, which is the sharpening of Roth’s lemma from [5]. We mention that
this sharpening was proved by making explicit the arguments in Faltings’ proof
of his Product theorem {7]. A result slightly weaker than Lemma 12 follows
from Ferretti’s work [8]. For further information on Faltings’ Product theorem
we refer to [13]. We recall that for a polynomial P with coefficients in Z, || P ||
denotes the maximum of the absolute values of its coeflicients.

Lemma 12 Let o be a real and k,ds,...,dy integers such that k > 2, 0 <
c<k+1 and .
d 2k
P >w="" forh=1,...,k—1. (6.1)
dri1 o
Further, let P be a non-zero polynomial in Z[X,, ..., Xy| of degree at most dp,
in Xp forh=1,...,k and &, ...,&; non-zero algebraic numbers such that

w
M(gh)dh/degfh > (4d1+"'+dk|| P”) 2 for h=1,...,k (6.2)

with wy = (3k3/a)k. Then there is a tuple j = (j1,-...,Jjx) of non-negative
integers with

k.
Zﬁl— o, DP(E,...,&) #0.

Proof This follows from Theorem 3 and the Remark on pp. 221-222 of [5]. We
mention that Theorem 3 of [5] has instead of (6.2) the assumption H(&;)% >
{ed1t++de H(P)}*2, with heights H(£), H(P) defined in [5]. This is implied by
(6.2) since H (&) > M (€)' /9°8¢» and since for polynomials P € Z[X1, ..., X],
H(P) is equal to the Euclidean norm of the vector of coefficients of P so H(P) <
{(d1 +1) - (dx + )}/?|| P||.

Let ¢y,. .., ¢ be non-negative reals satisfying (1.10). Let € and k be given
by (5.1), (5.2), respectively. Put

0= — (6.3)

Thus, the quantities w, wy in Lemma 12 are equal to

T - I R

We prove the following:
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Lemma 13 The inequality (1.5) has no solutions &y, ... ,& with

M(&) > (aM)™™ (6.5)
M(Eny1) > M(E,)*V/2 for h=1,...,k—1. (6.6)
Proof We assume the contrary and obtain a contradiction by applying Lem-
mas 11 and 12. We choose integers dy, ..., d; as follows: take
10%¢
di > max (6—2 C(K)) (6.7)

and let dy,...,dg—1 be the integers defined by

di log M (&) —log M(¢1) < d1log M(&1) < di log M (&),
dylog M (&) < dplog M (&) < dylog M(&1) + log M (&)
forh=2,...,k—1.

The inequality (6.7) implies that

log M(&1) -4,2
———— < 107 %",
di log M (&)
log M (&r) —a_2\—1_log M(&n) 2
B (1 1074e2) BN 2 pr =0 k1,
Tilog M (e = ) Teg () <
S0
M(e)™ < M(gn)™ < M()20+) forh=1,...,k. (6.8)
Further, (6.8) and (6.6) imply that
dh 2y =1 lOgM(£h+1) 2v—1 3w1
— > 1+ =T > (14 — > uwp . 6.9
G 20T Togmiey 20T e 09

We apply Lemma 11. Let P be the polynomial from Lemma 4. We assumed
(56.1) and (5.2); and (5.3) is a consequence of (6.7) and (6.9). Further, (5.7)
follows from (6.5), (5.1), (5.2), and (6.4), while (5.8) follows from (6.8). So by
Lemma 11 we have that there is a tuple ¢ € Cy such that for each tuple of non-
negative integers j = (j1, .. ., jx) satisfying (5.9) we have DjP(ggcl), el =
0.

We now apply Lemma 12 with ¢ = ek/t and with Eff") replacing &, for
h=1,...,k. From (6.9) we know already that (6.1) holds. Further, we have
for h=1,...,k,

M(&)*™ > M(&)™ > (4M)*k42 by (6.8),(6.5)
> (4M)3T(d1+"'+dk)w2 by (6.9)
> (4ht+de|| P|)* by (3.20).
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Hence (6.2) is also satisfied. It follows that there is a tuple j with (5.9) for

which DiP(g{*V ... &{*)) # 0. This is contrary to what we proved above.
Thus, our assumption that Lemma 13 is false leads to a contradiction.

We now complete the proof of part (i) of Theorem 2. Define a sequence
of solutions &;,&s,... of (1.5) as follows: £ is a solution & of (1.5) such that
M(¢) > (4M)3%%2 and M(¢) is minimal; and for b = 1,2, ..., 441 is a solution
¢ of (1.5) such that M(¢) > M(£,)%1/? and M (¢) is minimal. From Lemma
13 it follows, that this sequence has at most k — 1 elements.

Let A := max(4¥t+1)/(s=2%) Ar) be the lower bound in part (i) of Theorem
2. Put 6 := 1+ (k — 2t)/t. By assumption, the solutions of (1.5) lie in
the union of the intervals Iy = [4, (4M)3™%%2] and I, = [M(&,), M (&)%*/?]
(h=1,2,...). By part (i) of Lemma 2 and 4M < A? we have that the number
of solutions ¢ in Ij is at most

t(l 4 log(2log{(4M)3"*%2} / log A)) < t(l N log{6rkw26} )

log 8 log @
log 6rk log 3wy /2
<
_t(2+ log 8 log 6 )
log 3w

<t(2+k e ) by (5.1), (5.2), (6.4).

Moreover, by part (i) of Lemma 2 we have for h = 1,2, ..., that the number of
solutions in Iy, is at most

log(2log{ M (£)%1/2}/ log M (£1)) log 3un
t(l log 6 ) <t<1+ log 8 ) '

Since we have at most k — 1 intervals I, (h > 1), it follows that (1.5) has at
most

No=t(k+1+ 2k - 1)1‘1g§‘;’1)

solutions with M(£) > A. We estimate this from above. From (1.7) it follows
that k = Yj_, o1 > 2t + 6 so
log 8 > log(1 + - ) ;

Further,

2
log 3w; = log 6—k€—t by (6.4)

<log (2.5x 10t 11675 (1 + -;-logt)z(l + 3 log 5’1)2(10g4r)2)
by (5.1), (5.2)

<27+ 12logt + 6logé~! + 2loglog4r using (1+ %log:z:)2 <zforx>1
< 85(1+ 3logt)(1+ 2logé~!) -loglog4r using loglog4r > loglog4.
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Together with (5.2} this implies

Nskt-(1+%t-

<5x35x10* x 85-5(1+ %logt)2 6731+ %log5‘1)210g4r loglog 4r
< 2x107 - t"6 " *log 4r - loglog 4r .

log 3w;) < 5kt26™ 1 log 3w,

This completes the proof of part (i) of Theorem 2.
7. Proof of Theorem 3 We need the following combinatorial lemma:

Lemma 14 Let 0 be a real with 0 < § <1 andt an integer > 1. There exists
a set P, consisting of tuples p = (p1,...,ps) with py > pa > -+ > p; > 0 and

1-6< 3t pi <1, such that #P < 4{e*(3 + li—f———-i)}t_1 and such that for

all reals F, ..., Fy, A with
O<Fh<FKL---<F<l Fi---FE<A

there is a tuple p € P with F; < A% fori=1,...,t

Proof We assume without loss of generality that F} - -- Fy = A and that ¢ > 2
(otherwise we may take p1 = 1). Define ¢; by F; = A% for i = 1,...,t; thus,
c1>-->¢>0andey+---+¢ =1. Put

g:=[0" Yt -D]+1, fi=lag), pi=fi/g fori=1,...,t

Then clearly, F; < A? for i = 1,...,t. Since ¢;g — 1 < f; < ¢;9, we have
g—t< 22=1 fi < g and therefore, g —t +1 < 2:=1 fi < g since the f; are
integers. It follows that 1 -8 < 22=1 pi < 1. Further, the tuple p = (p1,...,pt)

belongs to the set

t

P:= { fl? ,ftEZ, f122ft20, g_t+152fzsg}
i=1

The map (f1/g,.-., ft/9)— (fi+t—~1,fo+t—2,..., f;) maps P bijectively

onto

t
P = {(hl,...,ht)eZt: hi>hy> - > he >0, g'—t+152h,~5g'},
i=1

with g’ = g+ 3¢(t—1) = [0~ 1(t—1)]+ 3t(t—1)+1. Clearly, the cardinality of P’
is at most 1/t! times the cardinality of the set of all (not necessarily decreasing)
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tuples of non-negative integers (hy, ..., k) with g’ —t+1 < Z’;f:l h; < g'. Using
that

(mﬂ’) <ty :(1+%)$(1+§)y5 (e(l+§))y for z,y > 1

y z=yy
we infer
1 & fhat-1\ 1, (g+t-1
=H#P < = < = .t
wp=wp<g S (T <ge (V1)
h=g'—t+1
et _ t 1 t—1
<o (e(+o 42+ =)
et t 1

o t-1 t—1
< — . —_— i >
< = (e(1+ +2)) (1+3(t—1)) sincet>2, <1
1 1+6071\t1
<4.(e?(z4+ -1~ )
<4 (e (2 + : ))
This ends the proof of the lemma.

Let f be the polynomial from Theorem 3, i.e.

F(X)=ao(X —a1) - (X —ar)

where the coefficients of f are rational integers, f is primitive, and ay,..., @,
are distinct. Further, let g be a primitive, irreducible polynomial in Z[X] of
degree t satisfying the conditions (1.17) and (1.18) with x satisfying (1.16).
Then

9(X) = bo(X — €M) (X — W)

where €, ... £® are the conjugates of an algebraic number & of degree t and
bo € Z. We order €M), .. ¢® in such a way that

e (t)
o — €7 < < i |aJ £

min <

.. 7.1
=L |lya;|  — j=ler  |Lag| ol (1)

We show that £ satisfies one from a finite collection of syssems (1.5) to which
Theorem 2 is applicable. From (1.12) it follows that

|R(f,9)| =ﬁ 7oy —€9)

M(f)*M(g)" 1,041,600 ° (7.2)

i=1j=1
For ¢ =1,...,t, let o, be the zero of f for which

o _ (@ ®
!l,aji| j=1,...r |1 a]|
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From triangle inequality (2.7) it follows that for j # j;,

O TN VYR LTI Yt LT S
|17a.1| ' |17€(1’)| T2 |1aa]'"|11§(1')| |17aji|’|17€(z)| N 2|1aaji|' |17aj|

Further, using that the discriminant D(f) = o372 icpcqer(on = ag)? is a
non-zero rational integer,

H |orj; — oyl > H lop — gl _ |D(f)|1/2
G5 2|17aji| . |17aj| - 2|17apl . |1»aq| 2T(r~1)/2M(f)T~1

1
2 27‘(1‘—-1)/2M(f)7‘—-1 '

1<p<g<r

Together with (7.2) this implies that

RO o gyl —€91
M(f)tM(g)T - i=1 2|1’a]1.| . |1’§(1)| '

(7.3)
t

with € = (27D (f)1)

Put £’ := (14 3+ + 525)(2t + 36). From (1.18) it follows that M(g) >

C*=*)"". Combining this with (7.3) and (1.17), and using that M(g) = M(¢),

we get
t

la]'i — g(z)l <C M(g)—n < M(g)—n'

i=1 zllya]l' ' |1’§(1,)| - - '
We now apply Lemma 14 to F; := |aj, ~£@|/(2-]1, ;|- |1, €D ) forj = 1,... ¢
and A = M(¢)™%". It is trivial that F; < 1 and together with (7.1) this gives
0<Fh <---<F,<1. Put

K= (1+%+”'+'2,51T1)(2t+%6)’ 6:=1-x"/k'=6/(8t+36). (7.4)

Letting P be the set from Lemma 14, we infer that there is a tuple p =
(p1,...,pt) € P such that

loj, — €9 — < M(E)"PF = M(¢)™% fori=1,...,t (7.5)
2|1’aji| : |17§(1,)| - ’ h

where @; := p;x’. Note that 3°¢_, ¢; > k", Together with (1.7) this implies

t
max(#D? (Y0 2 (X ) R =2

i€l j=1 2j
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Further, we have

M(f) z max M), [Qag,. ;) : Q<
M(€) = M(g) > max(4!t+D/(="=2) pp(£)) by (1.18).

Hence from part (i) of Theorem 2 with §/2 replacing é it follows that each
system (7.5) has at most 3.2 x 10%t76~*log 47t loglog 4r* solutions ¢ coming
from an irreducible polynomial ¢ satisfying (1.17), (1.18).

By (7.4) we have

oo ) (o)
1 8 1

<a(@G+5) " (1+5) <76

Further, for the tuple (j1,..., ;) we have at most r* possibilities. Therefore,
we have at most 7rt(63671)!~! possibilities for the system (7.5). We conclude
that the total number of primitive, irreducible polynomials g satisfying (1.17),
(1.18) is at most

7rt (6367 1)1 . 3.2 x 1031764 log 4rt log log 4rt
< 1013(671)**+23 . (100r)* log 4r log log 4r.

This completes the proof of Theorem 3.
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6
The Brun-Titchmarsh Theorem
JoHN FRIEDLANDER and HENRYK IWANIEC

1. Introduction The distribution of primes in arithmetic progressions is a
central issue in analytic number theory. For (a,q) = 1 we let 7(x; ¢, a) denote
the number of primes p < z, p = a (mod ¢q). The asymptotic formula

T

m(x;q,a) ~ ——————
(zig.a) p(q)logz

(1.1)
holds for each given progression as x — oo and one is interested in estimates
uniform with ¢ as large as possible. The Generalized Riemann Hypothesis
allows ¢ as large as /27¢ in (1.1) but all that is known unconditionally is
the much smaller range ¢ < (logx)“ for arbitrary constant A, known as the
Siegel-Walfisz theorem and now about sixty years old. On the other hand, one
expects (1.1) to hold with g as large as x17¢ although it is known to fail in the
range q < z(logz)™# for every A (see [1]).

Given the incompleteness of the above results it has proved to be of great
utility that, almost from the birth of the Brun sieve, it was possible to give
upper bounds

m(z;q,a) < S A—
T p(g)logz/q
with ¢ an absolute constant, which yield the correct order of magnitude throu-
ghout the range ¢ < x!~¢. This is known as the Brun-Titchmarsh theorem due
to the work {6]. Progress in the sieve led to this result with ¢ = 2 + ¢, which
can now be obtained in several ways (Selberg sieve, combinatorial sieve, large
sieve). This is the limit of the method in several respects. An improvement in
the constant ¢ for small ¢ would have striking consequences for the problem of
exceptional zeros of L-functions, hence for class numbers, etc. Moreover, it is
known that there are sequences of integers satisfying the same standard sieve
axioms (consider the set of those integers in the progression composed of an
odd number of prime factors) for which the corresponding bound cannot be
improved.

In view of this limitation it was a great achievement when Y. Motohashi [5],
by using non-trivial information about the nature of arithmetic progressions,
was able to improve the constant ¢ = 2 for certain larger ranges of ¢. This
work has had a significant impact on subsequent developments in general sieve
theory. Throughout, we shall write ¢ = 2°. Motohashi’s original results gave



86 J. Priedlander and H. Iwaniec

improvements in the range 0 < § < % The largest range in which such im-
provements are known till now is 0 < 6 < 2 given in [2]. The limit 2 is set
by an application of Weil’s estimate for Kloosterman sums and, despite many
recent developments in the latter topic, has resisted further widening. In this
paper we make a small improvement throughout the full range 0 < § < 1. Of
course, in view of the earlier results, we may assume 6 > %

Theorem 1 Let & <6<1landc=2- (152)8. Then we have

cT

(@) < p(q)logz/q

(1.2)

for all x sufficiently large in terms of 6.

Remark The exponent 6 can certainly be improved to some extent but we
have not tried to find the best result.

As in the Motohashi argument our proof is based on a non-trivial treatment
of the remainder term in the linear sieve. Whereas Motohashi used multiplica-
tive characters we employ a Fourier series expansion of the remainder term
which leads to incomplete sums of Kloosterman type. The case of large ¢ cor-
responds to very short sums and if one assumes conjectures about these, such
as the Hooley R*-conjecture, then one knows [2, Theorem 9] that the bound of
Theorem 1 holds with ¢ = g +e.

Very recently A.A. Karatsuba [4] has established non-trivial estimates for
certain remarkably short two-variable exponential sums of Kloosterman type.
His method works only if the variables are in certain isolated ranges. By
arranging the sieve machinery to meet these ranges we are able to exploit
his estimates to give Theorem 1.

There are a number of ways of applying the sieve to n(z;¢,a). The method
we use here actually gives the upper bound of Theorem 1 for the number
w{z, 2;q,a) of integers n < x, n = a (mod ¢) which have no prime factors less
than z = (x/q)'/3. This is clearly a larger number.

For completeness we present the proof of a case of Karatsuba’s theorem
which suffices for our purpose. Specifically we consider a bilinear form

S= >3 ompPneg(amn) with (a,q) =1, (1.3)

(mn.q)=1

where a,,,, B, are arbitrary complex numbers with |a,,| < 1, |8,| < 1 supported
on the dyadic intervals M < m < 2M, N <n < 2N. As usual

e(t) = e¥™, e,(t) =e(t/q), dd=1(modq).

We also assume that a,,, (5, are supported on primes. This gives cleaner,
stronger estimates and in any case is what occurs in our application.
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Theorem 2 Let k, £ be positive integers with k < N, £ < M. Suppose
QN1 < g, 2M)* 1 <q. (1.4)

Then we have .
|S| < k¢MN (gM~tN—F)T2 | (1.5)

The proof of Theorem 2 is completely elementary, no use of anything of the
depth of Weil’s bound. The argument is simpler than but reminiscent of Vino-
gradov’s treatment of exponential sums. The latter yields a corresponding
Brun-Titchmarsh theorem for primes in short intervals valid in the whole range
(see [2], Theorem 14).

Acknowledgements We thank Karatsuba for preprints of his then-unpubli-
shed work. J. F. was supported in part by NSERC grant A5123 and Macquarie
University. H. I. was supported in part by NSF grant DMS-9500797. We began
this work while enjoying the hospitality of IAS Princeton.

2. Proof of Theorem 1 Throughout we keep the standard notation and
appeal to results familiar from the linear sieve theory. Thus, given (a,q) = 1
we consider the sifting sequence

A={n<z:n=a(modq)}
and the sifting function
S(A,z)=|{ne A: (n,P(2)) =1}|

where P(z) denotes the product of all primes p < z, ptg.
Let w < y < z. Then, by an iteration of Buchstab’s identity

S(4,2)=S(Aw) = Y S(A,p)— Y, S(Apw)

y<p<z w<p<y

+ ZE S(Ampz’pZ)’ (2'1)

wp2<p1<y

where Ay = {n € A : n = 0(modd)}. We choose z = (z/q)3. If we apply
classical estimates of the linear sieve [3] for all of the sifting functions on the
right we would get the same bound as applying such estimates for the left-hand
side because it is in the nature of these bounds that they are, with the above
choice of z, stable under transformations via the Buchstab identity. Applying
these to either side of (2.1) we obtain

xl—s

S(A2) < —2 _ with D=

w(q)log D q 22)
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for any € > 0 provided z is sufficiently large in terms of ¢ and §. Thus,
to improve (2.2) it suffices to improve any part on the right-hand side, and
Theorem 2 allows us to do this for the double sum if y and w are chosen
suitably.

The classical bound for each sifting function in this double sum on the right
side of (2.1) is, for w > D,

2
z with Dlg =

S(A , <
(Ap:5,72) ©(q)p1 p2log D12 P1P2

(2.3)

because the sequence A, p, has level of distribution D;5 and p3 > Dia; the
latter follows from the stronger condition p3 > D, below. In Section 4 we shall
show that on average over py, ps this sequence has a larger level of distribution.
Specifically, let £ be an integer such that

30 50

1+ — <2< —— .
+1_0< £<1_0, (2.4)
this exists and is > 3 because % < 0 < 1. We choose
Lte -6 _¢
w = q and y=¢?1 (2.5)
where
5= 1
2022 -0+ 1)
In this range the improved level of distribution is
%
Dy, = (pl D2 q—1/e) Dsa . (2.6)
Therefore, on average
2z
S(A yD2) < 2.7
( P1 P2 ) SO(Q)plp210g-D/12 ( )

provided p3 > Dj,. It suffices to verify this last condition in the worst scenario
p1 = p2 = w in which case it is just the upper bound in (2.4). The lower bound
in (2.4) suffices to imply the requirement y < z for our choice of y and z.

The new bound (2.7) is smaller than the classical one (2.3} by the amount

2z ( ro_ 1 ) 2z log (p1p2q7'/%)
¢(q)p1p2 \log D1z logDiy) ~ p(a)p1ps 20log® (wq—1-1/%)
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because D}, < zg~1~1/£, Summing over p;, ps we get

S (pap2)tlog (pl paq™ ‘) ~c(£)logg

wlp2<p1<y
where
1
c(f) = // (a+ﬂ—z) dadp
72 <a<B<3=f
1/ 1-260 \° 1
T2\2020-1)) T 16(262 —£+1)3

Therefore our improvement is

c(f)xlogq 8,0z
2p(q) log*(zg=1~1/%) ~ ¢(q)logz/q

where

£c(£)8(1 — 6)
(1-6) -6

Choose the smallest £ from (2.4); this is less than ﬂls—_ﬁ‘ The above constant

satisfies 6
3 1-6
c(6,£) >c (0, m) > <T> ,

which proves Theorem 1, subject to the verification of the level of distribution
(2.6).

c(6,0) =

3. The Karatsuba theorem Here we prove Theorem 2. By Holder’s in-
equality we obtain

|S|’c < Mk_lz | Zﬂn eq(ammm) |k
SMk‘lz---Z | Zsmeq(aﬁ(ﬁl + -+ 7)) !
= MFk-1 Z v(b) | z.sm eq(abm) |

b(mod q)

with some &, having |&,,| = 1 and where v(b) denotes the number of k-tuples
(n1,...,nk) such that

1+ -+ + 7k = b(modg). (3.1)
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Again by Holder’s inequality

|52k < M- (Z y(b)>2e_2(2b: 1/2(b)) Eb: | ;em €4 (abim) |” .

b

Here the first sum is < N* and the second sum is < ug(N), the number of
2k-tuples (ny,...,n2x) such that

Ty + o+ T = Tgyr + - + Too (mod g). (3.2)

Also for the third sum we have

Z | Zem eq(abm) |22S we(Mq .

b(modgq) m
From these estimates we obtain
|Sl2k£ < /M(M)/.Lk(N)M2£(k_1)N2k(£_1)q . (33)

We require a bound for pi(N). To this end we note that from the assumption
(1.4) it follows that every solution of the congruence (3.2) is also a solution of

the equation
1 1 1 1
+ ot — (3.4)
ni Nk Nk4+1 N2k

and hence it suffices to estimate the number of solutions of (3.4). We shall also
make the (weak) assumption that k < N since under this condition we can say
that nl_l +--- +n,:1 may be written as a sum of fractions an~! having distinct
n and 1 < a < k and hence (a,n) = 1. Recall that the n; are primes. Thus

1 1 b
n1 ne  [n,..., Nk
with (b,n; ...n,) = 1 where [ny,...,n,] denotes the least common multiple,

and a similar expression holds for the right-hand size of (3.4). Hence, for any
solution of (3.4) we have n; = n; for some k < j < 2k. By induction the
solutions of (3.4) are diagonal up to permutation and hence

uk(N) < kINF (3.5)

with a similar bound for pe(M). Inserting these into (3.3) we conclude that

|S|2ke < ko M2k£—2N2k£—kq . (36)
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This yields (1.5).

4. The level of distribution for A, ,, Now we are ready to prove that
the subsequence Ay, p, has level of distribution

, Pl P2 % z1—3e
= 4.1
12 (ql/e> qP P (41)
on average over pi, po in the dyadic box Py < p; < 2P, P, < py < 2P, for
any Py, P, with w < Py, P, < y. This was required to establish (2.7) with this

!
12+
We shall estimate the sum of error terms

Ry=>_ Y (| Adpips | ~ 2o p2> (4.2)

P p2

over py, pe in the above box for every individual d with (d,q) = 1. We shall
prove that

l1-¢

x
Ry

ifd < Dj, . (4.3)
We write

A= X gm0 X 1)

n=0 (mod dpy p2) n=0 (mod dp; p2)
n=a (mod q) n=a (mod q)

where f(t) is a smooth non-negative function supported on z17¢ < t < z+z!~¢
such that 7 fU)(t) <« z¢ for j > 0 and f(0) = =z, while 3’ restricts the
summation to n in either of the two short intervals x < n < z + z'7¢ or
0 < n < z'~¢. By Poisson summation

N h -
—ahdpipa) -
Zf qdplpz ;f(qdplp2>%( ahdpps)

The zero frequency h = 0 gives the main term z/gdp;p2 whereas the contribu-
tion from |k| > H with
H = gqdP, Pyt

is negligible as is seen by partial integration. Therefore we have

Z ZZ(quIPZ )7Hf (qdp = ) eq(—ahdpip2) + O (x;e) .

0<|h|<H P1 P2
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To separate the variables p;, ps we write the Fourier transform as

N h ht
f (qdplpz) =p2/f(tp2)e <M> dt .
x

1—
Ry qu% Z | Zzamﬁpzeq(ahdplp?) | + qd

O<|h|l<H pP1 p2

Hence

€

for some |ap,| < 1 and |Bp,] < 1. To the double sum over p;, p2 we apply
Theorem 2 with £ = £ and the modulus ¢/(g,h) > gq/H. The condition (1.4)
requires

q>(2P)*'H (4.4)

for both P = P; and P». Employing d < D}, given by (4.1) and P,,P, < y
given by (2.5) one verifies (4.4). Here the presence of § in the choice of y cor-
responds to the presence of H in the condition (4.4) and the latter emerges
because it is necessary to put the fraction h/q into lowest terms. For pro-
gressions of prime modulus ¢ this would be unnecessary and the result would
be simpler and slightly stronger. Now, since (4.4) is verified, we derive by

Theorem 2 that .
oH ql/e 22 rl-¢
R ndally [ SR i
¢ & qd <P1P2 + qd

which gives (4.3).
Note that
S(AP1P21P2) < S(Ap1m1P2) .

Applying the linear sieve to the larger sifting function we derive by (4.3) the es-
timate (2.7) on average over p1, ps in every relevant dyadic box. This completes
the proof of Theorem 1.
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A Decomposition of Riemann’s Zeta-Function
ANDREW GRANVILLE

1. Introduction It is currently very much in vogue to study sums of the
form 11 1
C(pl,pZ’“'apg) = Z Zﬁ{;ﬁ'{aTg

a1>a2>>ag21 1 2 g
where all the a;’s and p;’s are positive integers, with p; > 2. Note that it is
necessary that p; > 2 else {(p) diverges. These sums are related to polyloga-
rithm functions (see [1], [2], and [3]) as well as to zeta functions (the Riemann
zeta function is of course the case g = 1). In this note we prove an identity
that was conjectured by Moen [5] and Markett [7]:

Proposition If g and N are positive integers with N > g + 1 then
C(N) = Z C(plap%'--)pg)' (1)

p1i+p2+--+py=N
Each p;>1, and p12>2

This identity was proved for ¢ = 2 by Euler, and for ¢ = 3 by Hoffman and
Moen [6]. The above proposition has been proved independently by Zagier [9],
who writes of his proof, ‘Although this proof is not very long, it seems too
complicated compared with the elegance of the statement. It would be nice to
find a more natural proof’: Unfortunately much the same can be said of the
very different proof that I have presented here.

Markett {7} and J. Borwein and Girgensohn [3] were able to evaluate

C(p17p2,p3)

in terms of values of {(p) whenever p; + p2 + p3 < 6, and in terms of {(p) and
¢(a,b) whenever p; + p2 + p3 < 10 — it would be interesting to know whether
such ‘descents’ are always possible or, as most researchers seem to believe, that
there is only a small class of such sums that can be so evaluated.

Proof of (1) We may re-write the sum on the right side of (1) as
PL s "t Pg-
a1>a2>>ay21 pr4pa+-+pg=N ay Gy agg

Each p;>1, and p12>2

The author is a Presidential Faculty Fellow, supported in part by the National Science
Foundation.
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The second sum here is the coefficient of z™ in the power series

£ ()L E) - i‘}zl e %

Therefore the sum above is

zaii

a1>az>>ag>1 j=1 a

1 £ 1
;VgH (a; — a;)

i=1

1# 5
g
Z A(m,j —1)(=1)?"7 B(m, g - j) (2)
m>1 j=1
where we take each a; = m in turn, with
17 1
Alm,j—1): = -] ——
3 =1 > Z al.l:[(az'—m)
1>a2>->a;-1>mM i=1

1
- Z (bl + m)b1b2 . bj-l

b1>be>->b;_121

taking each b; = a; — m, and

. £ 1
B(m,g—j):= > I1 m—ay

m>aj41>a542>>ag21i=5+1

1
_
bis1bjs2- - by

0<bjp1<bjspo< - <bg<m

now taking each b; = m — a;. Note that the generating function for B is

Y B(m, i)z = "ﬁl (1+ fg—) . @3)
i>0 b=1

Dealing with A is somewhat more difficult. We start by noting that
1 1 1
2 (by +m)by +m)b1 Eblz (EI b +m>

b1 >be
1 m
=Ezb2+62
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as this is a telescoping sum. Substituting this back into the definition for A we
next have to deal with

bzgsqz—l(2+c2 _—; ¢2 bZ (E (b2+02)>
m

for the same reasons. Putting this back into the definition we have to do the
same calculation again, now with the indices moved up one. Iterating this
procedure we end up with

1 1
A j—1) = — -_
(m,j=1) m Z c203...¢5°

which has generating function

;Amm %E(Hm(g)h(g)% )
- 110-9" g
c=1

Therefore, by (2), (3), and (4), the sum on the right side of (1) is

1
> Tt

m>1

times the coefficient of £91 in the power series

m-1 m -1 -1 i
HO-PIE-2) -0-2) -2
We thus get 3, 1/m" = ((N), giving (1).

2. Evaluations of {(r,s) Euler demonstrated that if N = r + s is odd with
s even then

o) = =5 { (V) +1}ean+ ag‘;}v{(‘;j) +(521) o @

a,b>2
a odd
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One can then obtain the value of ((s,r), provided r > 1, from the trivial
identity
¢(r,s) +¢(s,7) = C(r)¢(s) = {(r +s). (6)

(To prove this just write out the zeta-functions on both sides and compare
terms). In the special case r = 1 he proved, for any N > 3 that

(-1 =2 -2 Y e ")

a+b=N
a,b>2

Pages 47-49 of [8], Equation (2) of [2], and Theorem 4.1 of [7] are all equivalent
to, for N > 4,

N-1)(N -2)

(v -2,1,1) = (V) + 52N ~2)

6
T2 ety Y oK. ®
sy ol

Proof of (7) We evaluate the last sum in (7), using (6):

D @)=Y (¢la,b) +¢(ba) + ¢(N)

a+b=N a+b=N
a,b>2 a,b>2
=2 Z ¢(a,b) + (N = 3)¢(N)
a+b=
a, b>2

=2(¢(N) = (N - 1, 1)) + (N = 3)¢(N)
using (1) with g = 2, and the result follows after some re-arrangement.
Proof of (8) We begin by proving

> lpl,g) =¢(2N-2)+ (N -1,1). (9

ptg=N-1
P22, ¢21

Now the sum here equals

1 1 1 1
Z Z W= Z ab(a — c) <cN“3_aN‘3)

a>b>c>1 p+q=N-— a>b>c>1
p>2, q>1
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The first term is

1 1 1
Sy (a2 ) PP REL
c>1 b>c a>b c>1 b>c  i=0
1
=N -2+ 2w (575 5)
c>i>1 b>
1 138 1
=¢2N-2)+¢{(N-1,1)+ Y N%ZC-
c>i>1 j=1 ‘7

But the final sum in both of the last two displays are identical (after the change
of variables (a,b,c) — (¢, 1, j)), and so we have proved (9). We next prove that

Y e, 1) =@V —2) = ¢(2,N = 2) + {(N - 1,1) = {(N). (10)

p+g=N~-1
P22, ¢21

Using (7) and then (1) we have
(N =1¢) = 24N =1,1) =N -2 = D ((a)(N-a)

N-~3>a>2

= Y <)o

a+b+c=N
a,b>2, c>1

Just as in the proof of (6) we may determine such a product in terms of zeta-
functions by considering each term. We thus get ((a){(b,c) = ((a,b,c) +
¢(b,a,c) +{(b,c,a)+(a+b,c)+ {(b,a+c). Summing up over all possibilities
with a +b+c¢ = N and a,b > 2 we get three times the sum over all ((4, B, C)
in the sum (1) other than a few terms corresponding to whena =1 or b = 1,
and some multiples of (A, B). Precisely we get:

3 ) (abo- Y. (2a1,0)+(ae1))

atbte=N atc=N-1
a,b>2, c>1 a>2, c21
+ > (@=3%d+ Y, (f—2)X0,f)
d+c=N f+b=N
d>3, ¢>1 b>2, f>2
=M - Y (el
PISRNSY
+ Y (a+b=5)(a,b)—¢(2,N-2)—({(N —1,1)
aagél,’igl
=(N-2¢(N)- > (acel)—¢(2,N-2)—((N-11)
at+e=N-1

a>2, ¢21
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using (1) and (9). Combining the last two displays gives (10).
We now try to evaluate the last sum in (8):

> Laxer@= Y ¥ o bzc-

a+b+e=N a+b+c—N z,Y,221
a,b,c>2 a,b,c>

By analogy with the proof of (6), with a,b,c fixed we break up this sum ac-
cording to how z,y, 2z are ordered by size. For example, when z > y > z we
get precisely {(a,b,c). We thus get the sum of {(u,v,w) as u, v, w ranges over
all six orderings of a, b, c; plus the sum of {(u, N — u} + {(N — u,u) for each
u € {a,b,c}; plus ((N). Thus, using (6), we have

6 > (@bo+3 D (@b -+ D ).

a+b+c=N a+b+c=N a+b+c—
a,b,c>2 a,b,c>2 a,b,c>2

Using (1) with g = 3, we thus have

6(CN+CV =211~ Y (a,d1)+((e,1,d)

at+d+1=N
a>2, d>1

3 3 @-acaca-2(" 5 e
&35

=60(N -2,1 1) ~ (N = 1)(N — 8)¢(N) — 3¢(N — 2)¢(2) — 12¢(N - 1,1)
- Z (N = 6)¢(c)¢(d)

c+d=N
d>2, c>2

using (9) and (10), and combining the (¢, d) and (d, ¢) terms in the final sum.
Using (7) to remove the {(N — 1,1) terms, we obtain (8).

Acknowledgements Thanks are due to Roland Girgensohn for supplying
the reference [5], to Don Zagier and Michael Hoffman for their useful email
correspondence, and to the authors of [1], [2], [4], and [6] for making available
their preprints.
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Multiplicative Properties of Consecutive Integers
ApoLF J. HILDEBRAND

1. Introduction A variety of conjectures in number theory are based on the
heuristic that the multiplicative structures of consecutive integers are indepen-
dent. Thus, one would normally expect the probability that two consecutive
integers n and n+1 both possess a given multiplicative property to be approxi-
mately the square of the probability that an individual integer n possesses this
property. Of course, there may be obstructions preventing this (as in the case
of the property “divisible by 2”), but these obstructions are usually related to
congruence conditions, and the problem is easily modified to take into account
such conditions.

While it is easy to formulate conjectures based on such independence as-
sumptions, these conjectures often turn out to be extremely difficult to prove
and in many cases seem intractable. The most famous problem of this type is
the twin prime conjecture according to which n and n + 2 are simultaneously
prime infinitely often. A quantitative form of this conjecture asserts that the
probability that n and n + 2 are both prime is proportional to (logn)~2, the
square of the probability that an individual integer n is prime.

We consider here more general problems such as that of proving, under
suitable conditions on the multiplicative structure of a set A of positive integers,
the existence of infinitely many integers n (or a positive proportion of integers
n) such that both n and n + 1 belong A. Over the past decade, there has been
some progress on problems of this type, but many open questions remain. The
purpose of this paper is to give a survey of results that have been obtained and
to discuss some open problems that arise in this connection.

We begin by stating four concrete problems which motivated much of the
work that we will discuss here.

Problem A (Erdos [6]) For n > 2 let P(n) denote the largest prime factor
of n. Show that for every e > 0 there exist infinitely many integers n > 2 such
that P(n) and P(n + 1) both exceed nl=¢.

Problem B (Chowla {4]) Let k be an integer > 2. Show that there exist
constants co(k) and po(k) such that for every prime p > po(k) there exists a
positive integer n < co(k) such that n and n + 1 are both kth power residues
modulo p.

Problem C (Graham and Hensley [8]) Let A(n) be the Liouville function,
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defined by A(n) = 1 if the total number of prime factors of n is even, and
A(n) = ~1 otherwise. Show that the set of positive integers n for which A(n) =
A(n + 1) has positive lower density.

Problem D (Chowla [5]) Show that any finite pattern € = (e1,... ,€x) of
values €; = 1 occurs infinitely often in the sequence {A\(n)}n>1.

Problem A had been a long-standing conjecture of Erdés. In an attempt to
attack this problem, Balog [1] in 1982 proposed a conjecture giving a simple
general condition on the multiplicative structure and the density of a set A of
positive integers that would imply that A contains infinitely many pairs (n,n+
1) of consecutive integers. Problem A is a particular case of this conjecture.
Balog’s conjecture, and hence the assertion of Problem A, was established in
[12].

In investigating Problem B, it is convenient to use the following reformu-
lation which can be shown to be (essentially) equivalent to Problem B; see,
e.g., Mills [22]. Let F} denote the set of all completely multiplicative functions
whose values are kth roots of unity, i.e.,

Fk = {f N> C: fk =1, f(nlng) = f(nl)f(ng) (nl,nz € N)}

Problem B* Let k be an integer > 2. Show that there exists a constant cy(k)
such that for all f € Fj there exists a positive integer n < co(k) satisfying

f)=fn+1)=1.

For small values of k, the assertion of the latter problem can be verified
by considering all possible assignments of values f(p) for primes p below a
suitable bound co(k) and showing that each such assignment will result in a
pair of consecutive integers below ¢o(k) on which f takes on the value 1. For
example, if k = 2, it is easy to check that this will be the case with ¢y(2) = 10.
Using similar case-by-case verifications, and in part with the aid of computers,
the assertion of Problems B and B* had been established in a series of papers
in the 1960s for all values k < 7; see Problems 11-15 in Chap. 8 of [5] and the
references in [13].

The general case of Problems B and B*, however, remained open for many
years; it was settled in [13] for prime values of k, and in [18] for general k.
The proof of these results uses the ideas behind the proof of Balog’s conjecture
along with some additional arguments.

Problem C appeared in the problems section of the American Mathematical
Monthly and is easily solved by considering the values of the function h(n) =
A(n)A(n+1), which is equal to 1 if A(n) = A(n+1), and —1if A(n) = —A(n+1).
The complete multiplicativity of A(n) implies that whenever h(n) = —1 then
either h(2n) =1 or h(2n + 1) = 1. Setting

NiE)=#{n<z:An)=An+1)} =#{n<z:h(n)=1},
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it therefore follows that, for all > 1, [z] — N{z) < N(22 +1). Combining this
inequality with the trivial bound N(2z + 1) > N(z) gives

N(2z +1) > max(N(z), [¢] - N(z)) 2 [z]/2 (x> 1),

which implies that iminf,_,, N(z)/z > 1/4. Hence A(n) = A(n + 1) holds on
a set of lower density > 1/4.

In fact, the above argument shows that the same conclusion remains valid
for any completely multiplicative function f with values 1 in place of A(n).

While Problem C, as it stands, is not difficult, the question of whether the
opposite relation A(n} = —A(n + 1) holds on a set of positive density remains
open, although some partial results in this direction are known.

The conjecture of Problem D was stated by Chowla as Problem 56 in Chapter
8 of his book [5]. Chowla commented that “for k& > 3 this seems an extremely
hard conjecture.” The case k = 3 of this conjecture was established in [15], but
very little is known beyond this case.

The plan for the remainder of this paper is as follows. In Section 2 we de-
scribe Balog’s conjecture and some of its applications. In Section 3 we present
quantitative versions of these results. In Sections 4 and 5 we consider general-
izations to pairs of linear forms (an + b, cn + d) and to strings of & consecutive
integers in place of a pair of consecutive integers. In Section 6 we discuss prob-
lems on consecutive values of multiplicative functions that arise in connection
with Problems B* and C. In the final section we consider Problem D and, more
generally, the occurrence of patterns € = (1, ... ,€), €; = +1, among the val-
ues of a completely multiplicative function with values +1. We will formulate a
general conjecture that gives a condition on f under which every such pattern
should occur with its expected frequency.

2. Balog’s conjecture Motivated by Problem A above, A. Balog formulated
a general conjecture from which the asserted result would follow. To this end
he introduced the concept of a “stable set”, defined as follows.

Definition (Balog [1]) Let d be a positive integer. A set A C N is called
d-stable if the implication

necA<dnec A

holds for all positive integers n, with the possible exception of a set of density
zero. The set A is called stable if it is p-stable for every prime p (and hence
also d-stable for every positive integer d).

A stable set is thus a set that is invariant, modulo sets of density zero, with
respect to multiplication or division by a fixed integer. It is easily seen that
the sets {n € N: P(n) > n!~¢} arising in Problem A, and more generally any
set of the type

Qap ={n € N:n® < P(n) < nf}, 1)
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where 0 < a < 8 < 1, are stable.

Balog observed that if A is 2-stable and has density greater than 1/3, then A
contains infinitely many pairs (n,n + 1) of consecutive integers, and he showed
that the same conclusion holds if A is p-stable for p = 2 and p = 3 and d(A) >
3/10. These and similar results led him to conjecture that the conclusion holds
for any set A that is p-stable for every prime p and which has positive density.

Balog’s conjecture was proved in [12], in the following slightly stronger and
more general form. Here, and in the sequel, we denote by d(A) (resp. d(A))
the lower (resp. upper) asymptotic density of A.

Theorem 1 ([12]) For every e > 0 there exist constants §(¢) > 0 and po(e)
such that if A C N is p-stable for every prime p < po(€) and d(A) > € then
d(AN(A+1)) > é(e). Moreover, the same result holds with the upper density
d in place of the lower density d.

A key element in the proof of this result is played by sets S = {d; < --- < d,}
of positive integers having the property

d]—dz=(d1,,dj) (1 S'L<j§7") (2)

Following Heath-Brown, we will call such sets S “special sets”. An example
of a special set is the set {12,15,16,18}. The proof of Theorem 1 depends
on the existence of special sets of arbitrarily large cardinality, a fact that is
not obvious and which was first established by Heath-Brown [10]. A simple
inductive construction of special sets S, of cardinality r, also due to Heath-
Brown [11], goes as follows: For r = 2, we can take Sp = {1,2}. If r > 2 and a
special set S, = {d;}]-; has already been constructed, then setting

D=][d;, Sm1={D-di:1<i<r}u{D}
i=1

gives a special set with r + 1 elements.

Applying Theorem 1 to the sets Qq g defined in (1) (which, as noted above,
are stable and which also have positive density), we obtain as an immediate
corollary a result that contains the assertion of Problem A as a particular case:

Corollary 1 ([12]) Let 0 < a < 8 < 1. Then the set of positive integers n
for which n® < P(n) < n® and (n+1)* < P(n+1) < (n+1)? both hold has
positive lower density.

Another application concerns the least pair of consecutive quadratic non-
residues modulo a prime p. Let ny(p) denote the least quadratic non-residue
modulo p, and na(p) the least positive integer n such that n and n + 1 are
both quadratic non-residues modulo p. The best known bound for n;(p) is the
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Burgess-Vinogradov estimate n1(p) < p%*¢, where § = 1/4,/e and ¢ is any
fixed positive number. The following result shows that the same bound holds

for na(p).

Corollary 2 ([16]) For any fized € > 0 and all sufficiently large primes p we
have na(p) < pP+e.

Since trivially na(p) > n1(p), this estimate is best-possible in the sense that
any further improvement would result in an improvement of the bound for
n (p)

While not a direct consequence of Theorem 1, Corollary 2 can be deduced
from an appropriate finite version of Theorem 1 as follows. Given a large
prime p, let A be the set of quadratic non-residues modulo p, and set xy =
p?+e. The method of Burgess-Vinogradov then shows that AN [0, z]| > x for
Z > xo. Suppose first that (x) ni(p) > co with a sufficiently large constant
co = co(€). Then all positive integers d < ¢ are quadratic residues modulo
p, and multiplying or dividing an arbitrary integer n by some integer d < ¢
does not change the quadratic residue character of n. Hence A is d-stable
(in a rather strong sense) for all d < ¢5. If ¢g = ¢o(€) is sufficiently large,
then a suitable quantitative version of Theorem 1 will imply that, for x > g,
|AN(A—1)N[1,z]| >¢ z. Hence AN{A—1) contains a positive integer n < zy,
i.e., we have ny(p) < z¢ = p?*¢ as claimed.

A similar, but simpler argument can be used in the case when (*) is not
satisfied.

3. Quantitative results In trying to obtain good quantitative versions of
results such as Corollary 1, it is essential to have special sets S available that
are, in a certain sense, not too large. The key parameter turns out to be the
quantity

7(S)=lem{d; —d; : 1 <i<j<r}

which one would like to be as small as possible as a function of r. The special
sets S, constructed above are far from optimal in this respect. The problem of
constructing special sets S with small values of 7(S) was considered by Heath-
Brown who obtained the following result.

Theorem 2 (Heath-Brown [11]) For any r > 2 there exists a special set S
of cardinality v for which log T(S) < r3logr. Moreover, any such set satisfies
log 7(S) > rlogr.

Using this result, Heath-Brown obtained the following quantitative version
of Problem A.

Theorem 3 (Heath-Brown [11]) Let e(n) = c(loglogn/logn)'/4, where c is
a sufficiently large constant. Then there exist infinitely many positive integers
n such that P(n) > n'=¢™ and P(n +1) > n'=<™ both hold.
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Another application of Theorem 2 was given by Balog, Erdés, and Tenen-
baum:

Theorem 4 (Balog, Erdés, and Tenenbaum [2]) The estimate

_logz

< . < _u7u -
#{n<z:Pln(n+1) <y} >zu™ Tog

holds uniformly in the range

8logrl
>3, max (2,exp{—olg—0:;—oxgg—:€}) <y<z,
2

where log, x denotes the k times iterated logarithm.

Taking y to be of the form y = exp (clog z logz x/ log, ) yields the following
corollary, which is analogous to Theorem 3 above.

Corollary Let ¢(n) = clogs n/log, n, where ¢ is a sufficiently large constant.

Then there exist infinitely many positive integers n such that P(n(n + 1)) <
ne),

4. Generalization to two linear forms As a natural generalization of
Theorem 1 one might try to obtain a similar result with (n,n + 1) replaced by
a pair (an + b, cn + d) of linear forms in n. Such a generalization was recently
given by Balog and Ruzsa [3].

Theorem 5 (Balog and Ruzsa [3]) Leta >0, b> 0 and c # 0 be integers
satisfying (a,b)|e. If A is a stable set and d(A) > 0 then d(bAN (aA +¢)) > 0.
Moreover, the same result holds with d in place of d.

The proof of Theorem 5 hinges again on the construction of special sets S
that satisfy (2) as well as some additional conditions.

By specializing A to be of the form (1), one obtains the following corollary,
which generalizes the corresponding corollary to Theorem 1.

Corollary 1 (Balog and Ruzsa [3]) Let0 < a < f <1, and let a > 0 and
¢ # 0 be given integers. Then the set of positive integers n satisfying

n® < P(n) <nP, (an+c)* < Plan+c) < (an+c)?

has positive lower density.

This result has (and, in fact, was motivated by) the following surprising
application due to Fouvry and Mauduit [7]. Let s(n) denote the sum of the
binary digits of n and set

At ={neN:s(n)=0mod?2}, A~ ={neN:s(n)=1mod2}.



Multiplicative Properties of Consecutive Integers 109

Thus, A* (resp. A™) is the set of positive integers that have an even (resp. odd)
number of 1’s in their binary expansion. A difficult unsolved problem is to show
that each of these two sets contains infinitely many primes. This led Fouvry
and Mauduit to consider the corresponding problem with the set of primes
replaced by other sets such as {n € N: P(n) > n!=¢}, {n € N: P(n) < n¢},
and more generally, any set Qo g with 0 <a< g <1,

Corollary 2 (Fouvry and Mauduit [7]) Let 0 < o < 8 < 1. Then the sets
Qa3 N AT and Qq,g N A~ both have positive lower density.

To obtain this result, it suffices to observe that n € A* holds if and only if
2n+1 € A~ and to apply Corollary 1 with the linear form an +c¢ = 2n + 1.

While Theorem 5 covers a large class of pairs of linear forms (an +b,cn +d),
it does not apply to pairs of forms like (n, —n + ¢), which arise in connection
with Goldbach type problems. The method of Balog and Ruzsa seems to break
down in this case, and the question whether a Goldbach type analog of Theorem
1 holds remains open. It seems plausible that such an analog holds under the
same conditions as those in Theorem 1:

Conjecture 1 If A is a stable set with d(A) > 0, then every sufficiently large
integer N can be represented as a sum of two elements of A. Moreover, the
number of such representations is > N.

By taking A to be of the form Q, g with (a, 8) = (1 — ¢, 1), this conjecture
would imply that, for any € > 0, every sufficiently large integer N can be
written as N = a + b with P(a) and P(b) both exceeding > N!~¢. Similarly,
taking (e, 8) = (0, €) leads to such representations in which P(a) and P(b) are
both bounded from above by N€¢. Currently, results of this type are only known
for values € of the order of 0.3.

5. Generalization to strings of three or more consecutive integers
Another natural extension of Problem A is to show, for given ¢ > 0 and k > 3,
the existence of infinitely many integers n such that the greatest prime factors
ofn,n+1,...,n+k—1 all exceed n!~¢. To approach this general problem in
a manner analogous to Theorem 1, one might try to find, for any given integer
k > 3, conditions on a set A that imply the existence of infinitely many k-tuples
of consecutive integers in A, or even the stronger relation

dANA+1D)N--N(A+E-1)>0. (3)

In the case k = 2, Theorem 1 shows that (3) holds for any set A that is stable
and has positive lower density. A priori, there seems to be no reason why the
same conditions should not imply (3) for any £ > 3. We are therefore led to
the following conjecture.
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Conjecture 2 If A is a stable set with d(A) > 0, then (3) holds for any k > 2.
In particular, A contains arbitrarily long strings of consecutive integers.

This conjecture appears to be quite deep, and very little is known when
k > 3, even in special cases like the generalization of Problem A mentioned
above. A modest step towards the above conjecture is contained in the following
result:

Theorem 6 ([17]) Let k > 2 be given. If A is a stable set with d(A) >
(k —2)/(k — 1) then (3) holds.

It is easy to see that (3) holds for any set A with d(4) > 1 — 1/k. Without
additional conditions on the set A, this bound on d(A) is best possible, as can be
seen by taking A = {n € N: k{n}. Theorem 6 shows that if one assumes that
A is stable then the density condition can be relaxed to d(A4) > 1-1/(k —1).
Note that, in the case k = 2, this condition reduces to d(A) > 0, i.e., the
condition of Theorem 1.

6. Consecutive values of multiplicative functions The solution to Prob-
lems B and B* is given by the following results.

Theorem 7 ([18]) Let k be an integer > 2. There exist constants co(k)
and po(k) such that for every prime p > po(k) there exists a positive integer
n < ¢g(k) for which n and n+ 1 are both kth power residues modulo p.

Theorem 7* ([18]) Let k be a positive integer. There exists a constant co(k)
such that for any function f € Fj, there exists a positive integer n < co(k)

satisfying (x} f(n) = f(n+1) =1.

The argument of [18] in fact yields the existence of infinitely many integers
n satisfying (*), and it can probably be adapted to show that the set of such
integers has positive lower density.

Theorem 7 follows easily from Theorem 7* by taking f to be a kth power
residue character. (In fact, as already noted, the two results are essentially
equivalent.) The proof of Theorem 7* has its roots in the same ideas as that
of Theorem 1, but it requires additional arguments and is significantly more
complicated.

The similarity between Theorems 1 and 7* becomes apparent if we set A =
{n € N: f(n) = 1} in Theorem 7* and note that the conclusion of that theorem
amounts to the existence an element of AN (A ~ 1) below ¢y(k). While this
set A is not stable in the sense of Balog’s definition, it nonetheless has the
following closely related property: if d € A then dA C A and A/dNN C A,
while if d € A° then dA C A° and A/dNN C A°. Thus it is not surprising
that arguments similar to those used to prove Theorem 1 can be applied to the
proof of Theorem 7*.
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The main task in the proof of Theorem 7* is the construction of a special
set S = {dy < --- < d,} of cardinality r > 2 whose elements are bounded in
terms of k£ and which satisfies, in addition to (2), the condition

fld)=w (1<i<r), f((didj)))=w (1<i<j<r) (4)

for some kth root of unity w. Given such a set .S, the conclusion (x) of Theorem
7* is easily obtained: From (2), (4), and the complete multiplicativity of f it
follows that for 1 <i<j<r

f( di )_ f(di) -1
(diyds) ) f((dindj))
() (5801t
(di’ dj) (ds, dj) (div dj
whence (*) holds with n = d;/(d;, d;).

The construction of special sets satisfying (4) is quite delicate and requires a
variety of combinatorial and number theoretical tools, including sieve estimates,
estimates for sums of multiplicative functions, and Ramsey’s theorem.

One can generalize Problems B* and C to strings of £ > 3 consecutive
integers. For example, if f is a completely multiplicative function f with values
+1, do there exist infinitely many (or a positive proportion of) strings of k&
consecutive integers on which f takes on the value +1?7 One would certainly
expect this to be the case when f is the Liouville function. However, there

exist functions f that do not have this property for £ = 3. Examples are the
completely multiplicative functions fy defined by

+1 ifp=3,
felp) = 1 if p=1mod 3,
~1 if p=-1mod3.

On integers coprime to 3, these functions coincide with the non-principal char-
acter modulo 3. The functions fi therefore take on both values £1 in every
interval of length 3 and thus cannot be equal to 1 on three consecutive inte-
gers. However, I. and G. Schur proved that the functions fi are the only such
exceptions.

Theorem 8 (I. and G. Schur [23]) For any completely multiplicative function
f # fi+ with values 1, there exists a positive integer n for which f(n) =
fn+1) = f(n+2) =1.

This result is proved by a fairly complex case-by-case analysis of possible
assignments of the values f(p) for small primes p. The proof, in fact, shows
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that an integer n with the desired property f(n) = f(n+1) = f(n+2) =1
must occur below some absolute bound ny. However, it does not seem to yield
the existence of a positive proportion of integers with this property.

Theorem 8 suggests two natural generalizations. The first is to prove an
analogous result for functions f whose values are roots of unity of a given
order. This problem remains wide open. The second possible generalization is
to extend the result to sequences of k > 4 consecutive integers. Of course, the
set of “exceptional” functions will increase with k. In the case k = 4, Hudson
[19] found, in addition to the functions fi above, 13 completely multiplicative
functions with values +1 that do not have four consecutive values of 1, and
he conjectured that these 15 functions are the only ones with this property.
Again, very little is known in this direction.

7. General patterns of values As a natural generalization of Problems
C and D, and of results such as Theorem 8, one might try to investigate the
occurrence of general patterns € = (ey, ... ,€x) of values +1 in the sequence of
values of a completely multiplicative function f with values +1. This appears
to be a difficult, and in its full generality probably intractable, problem. Very
few results are known, even in particular cases such as the Liouville function
A(n). In this section we will survey some of these results and formulate a
general conjecture.
We let

M = {f :N—- {£1}: f(nin2) = f(n1)f(n2) (n1,n2 € N)}

be the set of all completely multiplicative functions with values £1. Given a
function f € M and a pattern € = (ey,. .. , €) of values 1, we set

N(gz)=Ns(gz)=#{n<z: fln+i-1)=e (1<i<k)}

i.e., N(g;x) counts the number of occurrences of the pattern ¢ among the first
[x] terms of the sequence {f(n)},>1. The ultimate goal is to show that, as
x — 00, N(¢;z)/x tends to a limit, and to evaluate that limit. However, we
are very from proving such a result for general patterns €, and in most cases it
is not even known whether N(¢; z) tends to infinity with x.

The case of patterns ¢ of length 1 is the only case in which the asymptotic
behavior of Ny(¢; x) is known for general functions f € M, and even this case
is highly non-trivial. In view of the relations

N((1);2) + N((-1);2) = [z], N((1);2) - N((-1);z) =D f(n)

n<z

the convergence of N¢(¢; z)/z for € = (1) or ¢ = (—1) is equivalent to the exis-
tence of the mean value lim;_,o(1/2) 3", <g f(n) of f. In the case f = A, this



Multiplicative Properties of Consecutive Integers 113

mean value exists and is zero, a result that is equivalent to the prime number
theorem. For more general classes of multiplicative functions f, Wirsing [26]
proved a mean value theorem which in the case f € M may be stated as follows.

Theorem 9 (Wirsing [26]) Let f € M. If

1
Z 5=°°’ (5)

f(p)#1
then for e = (1) and ¢ = (—1) we have

i Nrle2) _ 1 (6)

z—0 I 2

If the series in (5) converges, then the two limits (6) exist, but are different

from 1/2.

We denote by My the set of functions f € M that satisfy (5). By Wirsing’s
theorem these are exactly the functions in M that have mean value 0; in partic-
ular, the Liouville function A belongs to My. We will, for the most part, restrict
ourselves here to functions f € Mj. Only for this subclass of M is the general
problem described above non-routine and, in most cases, still unsolved. For
functions f € M \ My, i.e., for functions f for which the series (5) converges,
the asymptotic behavior of N¢(g; x) can be completely determined by standard
convolution arguments.

We now turn to the case of patterns of length 2. For the two patterns
€ =(1,1) and ¢ = (—1, —1) the simple argument given in Section 1 shows that

liminf ~(V(1,1);2) + N((~1,-1);2))

L

— liminf %#{n <z:f(n)=fln+1)}>

T—00

Since for any function f € M with mean value 0,
N((1,1);2) = N((-1,-1);z) + o(z),

it follows that for f € My and for each of the patterns ¢ = (1,1) and ¢ =
(_13 _1)’
N .
liming &) S )
T—00 x
The remaining two patterns of length 2, ¢ = (1,~1) and ¢ = (-1,1), by
contrast, lead to difficult problems. In particular, the question whether (7)
holds for these patterns is still open. The best known result in this direction
is the following theorem.
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Theorem 10 ([14]) For any function f € My and for ¢ = (-1,1) and ¢ =
(1,-1) we have
lim sup Ny (&)

——— > 0.
z—oo Z(loglogz)—4 >

Even in the special case f = A, a better bound for N(g;x) than that of
Theorem 10 is not known. In particular, we cannot exclude the possibility that
N (e; 2} = o(z) holds for each of the patterns ¢ = (1, -1) and ¢ = (—1,1), or
equivalently, that the number of sign changes up to z in the sequence {A(n)}n>1
is of order o(z). In this case, the sequence {A(n)},>1 would consist of alternat-
ing blocks of 1’s and (—1)’s, with the average block length tending to infinity,
a behavior that seems highly unlikely.

For patterns ¢ of length 3 or longer, only a few isolated results are known.
In the case f = A, the conjecture of Chowla stated in Problem D predicts
that every pattern ¢ occurs infinitely often. In fact, assuming the sequence
{A\(n)}n>1 behaves like a random sequence, one would expect that much more
is true: namely, that a pattern e occurs with its “proper” frequency 2~%, where
k is the length of the pattern.

The following result establishes Chowla’s original conjecture for all patterns
of length k = 3.

Theorem 11 ([15]) For any pattern € = (1, €2,€3) of values e¢; = +1 there
exist infinitely many positive integers n such that A(n +1) =¢; fori=1,2,3.

Beyond this result, very little is known. In particular, it is not known
whether (7} holds for any pattern of length k = 3; the argument of [15] gives
only a much weaker lower bound for the counting function Ny (g; z). The case
k > 4 of Problem D is completely open; indeed, not a single pattern of length
k > 4 is known for which Chowla’s conjecture holds.

It seems plausible that the result of Theorem 11 holds for all but finitely
many functions f € My. The proof of Theorem 11 depends only mildly on par-
ticular properties of the function A(n). It immediately generalizes to functions
f € M that have the same values as the function A at the primes 2, 3, 5, 7, 29,
and 31; other classes of functions f can be covered by similar arguments.

For general functions f € My, the full analog of Theorem 11 is still open.
However, a number of partial results are known. Some of these results establish
analogs of Theorem 11 for particular patterns € of length 3 or for functions
f satisfying some additional hypotheses. An example is Theorem 8 of the
previous section, which shows that for all except two functions f € M the
pattern € = (1,1,1) occurs at least once in the sequence {f(n)},>1. Another
result of this type is the following theorem.

Theorem 12 (Sudo [24]) Let f € M and suppose that f(p) = —1 for at least
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two primes p. Then there exists a positive integer n such that
(f(n)a f(n + 1)) f(n + 2)) = (_17 1, _1)'

Moreover, if f(2) =1, there exist infinitely many such integers.

Several authors have investigated the occurrence of general patterns of the
form (¥) f(n+a;) =1,1 < i <k, where a; < ... < ai are given integers. In
particular, the question which tuples (ay,... ,ax) have the property that the

equation (*) has a solution n < ¢y with a suitable constant ¢o = co(aq, ... ,ax)
for all f € M has received some attention because of the following (easily
proved) connection with patterns of quadratic residues: The tuples (a1, ... ,ak)

with this property are exactly those for which, for every sufficiently large prime
p, there exists an integer n < ¢y such that each of the numbers n+a;, 1 <i <k,
is a quadratic residue modulo p. This problem was initiated by E. Lehmer [21]
who discussed a number of special cases and formulated several conjectures; see
also Section F6 in [9]. We quote two typical results concerning this problem.

Theorem 13 (Hudson [20]) Let f € M, and suppose that f(2) = —1 and
that, for some q with (¢,5) = 1, f(q) # (%) Then there exists a positive
integer n < 12q such that f(n) = f(n+2) = f(n+3) =1.

Theorem 14 (Walum [25]) Let S > 1 be given. Then there exists a constant
B = B(S) such that for any function f € M there exists a positive integer
n € (S,S + B| with f(n) = f(n+3)=f(n+4)=1.

The above results suggest that, for a given value of k, all but finitely many
functions f € M take on any pattern of length & infinitely often. Moreover, in
results such as Theorem 8 in which a complete determination of all exceptional
functions f was obtained, the exceptional functions turned out to be functions
that are very close to a quadratic character. We are thus led to conjecture that
if a function f € M is, in a suitable sense, not too close to a character, then the
sequence {f(n)}n>1 behaves like a random sequence of values %1 in the sense
that each of the patterns ¢ occurs in this sequence with the expected frequency.
To measure the “closeness” to a character, we introduce the following definition.

Definition A function f € M is called characterlike, if, for some Dirichlet
character x,

1
- <o0 *)
foAaxm P
holds.

Note that in the case x is a principal character, condition (*) is equivalent
to Y. Fo)#1 1 /p < o0, which by Wirsing’s theorem characterizes those functions
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f € M that do not have mean value 0. Thus, a function f € M that is not
characterlike in the sense of the above definition belongs to the class My of
functions f € M with mean value 0.

For characterlike functions f, the asymptotic behavior of the frequencies
N(eg; ) can easily be determined by representing f as a convolution product
f = x * g, where x is the character associated with f. The interesting case
therefore is that of functions that are not characterlike. For this case we propose
the following conjecture.

Conjecture 3 Let f € M, and assume that f is not characterlike. Then, for
each pattern € = (€1,... ,€x) of values €; = +1, we have lim,_,oo Nf(¢; z)/x =
27k,
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On the Equation (z™ —1)/(z — 1) = y? with z Power

NORIKO HIRATA-KOHNO and TARLOK N. SHOREY

1. Introduction We consider the equation

1
1 =y’ inintegersz > 1,y > 1, m>2,q>2. (1)

Ljunggren [5] proved that equation (1) with ¢ = 2 has no solution other than
r=3,y=1l,m=5and x =7, y = 20, m = 4. Thus there is no loss of
generality in assuming that ¢ is an odd prime number. Recently, Saradha and
Shorey [7] proved that equation (1) has finitely many solutions whenever z is a
square. In this paper, we consider analogous question if = is a cube or a higher
power. Thus we shall consider equation (1) with z = z# where z > 1 and 4 > 3
are integers. There is no loss of generality in assuming that p is an odd prime
number. We shall follow the above notation and assumptions throughout the
paper.

Theorem Let z > 1 be an integer and p > 3 be a prime number. Assume
that

g > 2(u—1)(2u - 9). (@)

Then equation (1) with x = 2z* implies that max(x,y,m,q) is bounded by an
effectively computable number ¢ depending only on p.

If u = g, Shorey [9] showed that the assertion of the Theorem is valid with ¢
replaced by an absolute constant. In fact, Maohua Le [4] proved that equation
(1) has no solution whenever z is a g-th power. The case ¢ = 3 of the preceding
result is due to Inkeri [3, Lemma 4]. Consequently, we derive from the Theorem
that equation (1) with z = 2% and ¢ # 5,7,11 implies that max(z,y,m,q) is
bounded by an effectively computable absolute constant.

2. Lemmas This section consists of lemmas for the proof of the Theorem.
We start with the following result of Shorey and Tijdeman [11] on equation

(1).

Lemma 1 Equation (1) has only finitely many solutions if either x is fixed
or m has a fized prime divisor. Furthermore, the assertion is effective.

Now we apply Lemma 1 to secure the following factorisation for equation
(1) with z = z#.
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Lemma 2 Equation (1) with x = z* implies that either max(z,y, m,q) is
bounded by an effectively computable number depending only on u or

Zm -1 q zm(“—l) —+ zm(“_2) +...4 ]_
— v 14 ap=24 .. 41

— 24
Z—1 =Y (3)

where y1 > 1 and y3 > 1 are relatively prime integers such that y1y2 = y.

Proof 1If either ged(p, m) > 1 or ged(p — 1,m) > 1, then m has a fixed prime
divisor and we apply Lemma 1 to conclude that max(z,y,m, q) is bounded by
an effectively computable number depending only on g. Thus we may suppose
that ged(u, m) = ged(p — 1,m) = 1. We write equation (1) as

ABC™1 =y
where m_ 1 um 1 b1
z™ — ZHm — zH —
A=~ B=Z2__ - ¢o="—_"—,
z—1" zm -1’ z—1
Let p be a prime number dividing A and B and let v be the least positive
integer such that 2¥ = 1 (mod p). Then p = p, v|m and v|(p ~— 1) which

imply that v = 1 since ged(x — 1,m) = 1. Now we see that p|m contradicting
ged(p,m) = 1. Thus ged(A, B) = 1. Similarly ged(4,C) = 1. Consequently
A = y] where y; > 1 is an integer and (3) follows.

The next result, due to the first author, is a slight refinement of Lemma 1 of
[10], which is proved by the method of Baker’s article [2] on the approximations
of certain algebraic numbers by rationals using Padé approximations.

Lemma 3 Let A, B,K and n be positive integers such that A > B, K < n,
n >3 and w = (B/A)Y" is not a rational number. For 0 < ¢ < 1, put

2-¢ _ ¢
K’ " 1-¢

=1+
up = (32K+1 . 9s(UE+ZH3n(K+1)+(1+(3n)/2) (K +1))1/ (Ks=1)
u2—1 — g2K+1p? (1 + 2—~29)K—1n2K2K+s+2+3n(K+1)'
Assume that
A(A-B)bu! > 1. (4)
Then

Uz

P
‘“’ B 5' > AgRG+D)

for all integers p and q with ¢ > 0.
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Proof We put

I(r) = ,nzK(,,, + 1)2K+1,,.2K+1Ar23n(r+1)(K+1)/2+r(K+1),

Ap = 32K+ 4. (K +1)((3n)/2+1)
Ay = 24K+2+3n(K+1)(A _ B)K+1A—K

c= 23n(K+1)/2n2K7

and
_log )y

B log/\z '

By (4) and 0 < ¢ < 1, we observe that 0 < A2 < 1,s>1and 0 < —A < s.
We follow the proof of Lemma 4 and Lemma 5 both in Baker [2] with m; = j
for 0 < 7 € K to conclude that for integers r,p and ¢ with » > 0, ¢ > 0 and
p # q, there exists a polynomial P,.(X) € Z[X] satisfying the four conditions:
(i) deg P, < K, (i) H(P,) < I(r), (iii) Pr(p/q) # 0, and (iv) |Pr(w)| < 5.
Here H(P,) denotes the maximum of the absolute values of the coeflicients of
P,.. We remark that for p = ¢, the lemma follows immediately. We may assume
that |w — p/q| < 272° and we define r as the smallest integer such that

ATSL
2qK

We see [(r) < cA]. We suppose that r > 2. As

Ao

A > 5gk

we obtain

A \A
Iry<eXi=c\ih <e (m]—i{) = e\ 2727 EA < e 20K,

When r = 1, also we have I(r) < cA12°¢™®. Further, we observe that

()

<

2 (2) - P+ IR

() -ro-

P (5) B (w)\ = 2¢K

Thus
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On the other hand, we have

() -re

<K2(1+272)% Yy ’w - 3‘ :

/ PT'(X)dX
p/q

Consequently
P U2
‘w - a‘ > AgK (D)

by definition of u,.

In an earlier paper, Baker [1] proved a result of the above form under the
validity of a more restrictive assumption, namely (4) with § = 2 which is not
satisfied in the proof of the Theorem. Now we apply the above lemmas to prove
the Theorem whenever ¢ is fixed.

Lemma 4  Equation (1) with x = 2* and (2) implies that max(z,y,m) is
bounded by an effectively computable number depending only on q and p.

Proof Let equation (1) with z = 2# and (2) be satisfied. Then we may sup-
pose (3) and we apply Lemma 1 to assume that min(m, z) exceeds a sufficiently
large effectively computable number c¢; depending only on ¢ and p. Further,
we re-write (3) as

(z-yi=2"-1, (T4 + Dy =2"0"D 4 41 (5)
Then
0<(z# 14+ 1)y — (2 - 1)“’1y§(”_1) < pz™H=2) (6)
which implies that
2z (B—2)
0< |w— gil i =1 )
(i Zu=1y8W=1)
where y
— 1)1 q
w= (D) ®)
e

For applying Lemma 3, weput A=2#"1+...4+1, B=(z—-1)*"}, n=¢q>3,
K=2n-2)<qby(2,¢=pn""8=(u-1-(/2))/(n-2),s=6/(1-9¢),
p =1 and ¢ = y*~'. Then we utilise (2) to estimate

K(s+1)(u—1)/q= &= "’)((f(fq;;(“ S PSR (9)
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Further, the assumption (4) of Lemma 3 is satisfied if
D (17 W T |

which is the case since z > ¢; with ¢; sufficiently large. Hence we apply Lemma
3 to conclude that

Y2 U2
w— > . 10
W T 2gum1yfet DD 1o

Here we observe that (10) follows immediately if w is rational and therefore it
involves no loss of generality in assuming that w is irrational while applying
Lemma 3. Now we derive from (7), (10), and z < %™~V by (5) that

ytli(u—l)—K(sH)(u—l) < cgygu%)qm/(m-l) ’

where ¢ is an effectively computable number depending only on ¢ and p.
Therefore, since m > ¢1, z > ¢;, and ¢ is sufficiently large, we observe that

1 SK(s+1)+_1g
p—1 q Iz

which contradicts (9).

In view of the above lemma, it remains to show that equation (1) with 2 = 2#
implies that q is bounded. The proof depends on Baker’s theory of linear forms
in logarithms. The following refinement of an estimate of Shorey [8, Lemma 4]
is a consequence of a result of Philippon and Waldschmidt (6, Theorem 2.2] on
linear forms in logarithms.

Lemma 5 Letn > 1 be an integer and 1, > 1, 75 > 1 be real numbers. Let
a1, ,n—1 and a, be positive rational numbers of heights not exceeding Ay
and A, respectively, where A; > 3, A>3 and

(log A)(logAl)_l > 7'1_1.

Further, assume that |log ;| < Al—l/"2 for1<i<mn. Letb;,--- ,b, be rational
integers of absolute values not exceeding B > 2 such that

A=bilogag +- -+ byloga, #0.

There exists an effectively computable number cg depending only on n, T, and

Ty such that
log B
> — .
| A| 2> exp ( C3 <1+ logA1> logA>
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Here the height of a non-zero rational number a/b with ged{(a, b) = 1 is defined
as max(|a}, [b]).

3. Proof of the Theorem We denote by cy,- -, c7 effectively computable
positive numbers depending only on p. Suppose that equation (1) with z = 2#
is satisfied. By Lemma 4, it suffices to show that ¢ < ¢4. Now we refer to
Lemma 1 to suppose that min(q, m, z) > c5 with ¢ sufficiently large. Then we
derive (3) which, as in the proof of Lemma 4, implies (6). Consequently

0 <llogay +qlogas] < 8uz™™ (11)

where a; = w9, ap = %! /y, and w is given by (8). We observe that

n—2 2
|log o] < log (1 + (z'lizﬁ) < ZH -2

which, together with (11), implies that
0 < |logas| < z7Y/2.

Further, we observe from (5) that the heights of a; and a3 do not exceed 22#1
and 2z(#~1(m=1)/4 by (5) and (2), respectively. Consequently

1 T -1/2
22(p—1)(m-1)/q = max(yf_l,w) =%

which implies that
g<4(p—1)(m—1)

and
log(Qz(u-l)(m—l)/q) m—1 1

> > .
log(2z¢-1) = 2¢ T 8(p-1)

Now we apply Lemma 5 with n = 2, A; = 2z¢~1, A = 2z(-D(m=-1/q 7 -
72 = 8(p — 1), and B = ¢ to conclude that

|log o1 + qlog az| > exp(—csmq ™ log(gz))- (12)

Finally, we combine (11) and (12) to conclude that ¢ < ¢7.
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Congruence Families of Exponential Sums
MARTIN N. HUXLEY and NIGEL WATT

1. Introduction In the Bombieri-Iwaniec method for single exponential
sums [1], as set out in [5], the exponential sum with a primitive Dirichlet
character x mod &k,

M2
Sy =Y _ x(m)e(f(m)), (1.1)
M

where My < 2M, has to be estimated in terms of a type 1 congruence family

of sums
M,

Sg=Ze(f(m)+eTm), ¢

M

0,.k—1 (1.2)

or a type 2 congruence family

s=te(r(mel)). emomiorug

M

In Jutila’s sums with modular form coefficients (8], twisting by a character
makes no essential difference. The Iwaniec—-Mozzochi double exponential sum
can be twisted by a character in two different ways [7]; the corresponding
congruence families were considered in [6].

The main idea of this paper is that resonance curves for coincidences be-
tween different pairs of sums of the congruence family are related by a trans-
lation in the plane. The curves are parametrised by matrices of the modular
group. As in [7], the appropriate congruence subgroups play a special role.

Theorem 1 Let F(x) be a function four times continuously differentiable on
the interval 1 < x < 2, whose derivatives satisfy the following conditions:
|FI(@)| < ¢y (1.4)
forr=3,4,
|[FO) ()| > 1/Cy (1.5)

for r = 3, where Cy is a positive constant. Let the congruence family Sy be
defined by (1.2) (type 1) or by (1.3) (type 2), where f(z) = TF(x/M). Suppose
that for some Co > 1 either case 1 or case 2 holds.
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Case 1. M < Co\/T, and (1.5) holds for r = 4 also;
Case 2. M > C;'\/T and (1.4) and (1.5) hold for r = 2 also, and

|F"(2)F®(2) - 3(F® ()| > C3

for some positive constant Cs. Let € > 0 be arbitrary. If M is sufficiently large
in terms of C1, then we have

k-1
Z |S€|5 < d(k)kM5/2T89/114+e (1.6)
0

for any € > 0, when
k< T and T% « MM <« T%.

The T¢ in (1.6) may be replaced by (log T)® for type 1 sums in Case 1 and for
type 2 sums in Case 2.
Secondly we have in Case 1

k-1
3 18el® < Vd(k)E (M13/4T11/24 + M7/4T13/12) log®T  (1.7)
0
when
T1/3+€ <M <<T1/2
and

<o () (7))

for type 1 families, or

. T 1/4 M3 1/12 M4 1/24
k < min m , max —17 5 W

for type 2 families.
Thirdly, we have in Case 2

k-1
SIS < Vak)k (M7/4T29/24 + M13/4T1/3) log® T (1.8)
0

when
T1/2 <M <<T2/3—€
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M2 1/4 T2 1/6
k < min (?) (W)

for type 1 families, or

k M2 3/8 T2 1/4
Qe < ((T) (m) )
for type 2 families.

The implied constants are constructed from Cy, Cy, Cs, from the implied
constants in the various ranges for M and k, and, where appropriate, from e.

and

Theorem 1 can be stated more generally with bounded weights g(m/M),
where g(z) has bounded variation. The upper bounds for k can be relaxed, at
the cost of extra terms in (1.6), (1.7), and (1.8). Theorem 1 can be extended to
a family of congruence families of sums indexed by a parameter y; the number
of cases rises from eight in Theorem 17.2.2 of [5] to about eighteen.

Theorem 2 Let € > 0 be given. There is a constant C(€) with
L (4 +it, )| < ClOA) 1R

for each primitive character x mod k, when |t| > k57/2. For prime k the factor
|t|¢ may be replaced by a bounded power of log |t|.

The exponent 89/570 of [t| in Theorem 2 is the same as for the Riemann
zeta function in [4]; Watt [10] had 89/560. Theorem 17.3.1 of [5] had 89/570,
but a larger power of k. The exponent 2/5 of k is much larger than the exponent
3/16 for Dirichlet L-functions at a fixed height ¢ found by Burgess [2]. In
applications log |t| and log k are often comparable. Then a result of Motohashi
[9] gives useful estimates, stronger than ours.

2. Resonance curves The sum S is divided into short intervals of length N.
On each interval we pick a rational value a/q of f(z)/2 to label the interval
as a Farey arc. We form an approximating polynomial as in chapter 7 of [5];
its terms in z2 and 2® do not involve £. We introduce extra notation: for type
1 sums ¢f = h(£)k + j(£), for type 2 sums 2af = h(€)k + j(£), with h(£) and
j(£) integers chosen so that

Kk + §(€)] < k/2.

The exponential sum over a Farey arc is transformed by Poisson summation.
The large sieve shows that the transformed sums are small in mean square,
provided that there are not too many coincidences between transformed sums
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from different minor arcs (which may come from different sums of the family).
These coincidences, or resonances, are associated with magic matrices with
integer entries and determinant one.

We group the Farey arcs into blocks corresponding to values of a/q in an
interval between two consecutive Farey fractions e/r and f/s. When we fix
the magic matrix, the arc labelled a/q can only resonate with the arc a1/q;
obtained from a/q by Mobius action. Fix £ and ¢, and suppose that a/q
labels an arc of Se, a1/¢; labels an arc of Sp,. Resonances occur when there
is an integer point (¢, d) close to a resonance curve R(¢,£,), z = K(y), defined
implicitly in terms of a/q by

a
q rr+s
y=al, 1) —¢(x), z=p¢"4)+zg (z)—g(x)

as in Lemmas 15.2.1 and 15.3.1 of [5]. The Fortean (coincidence-detecting)
function g(x) does not depend on £ or £;, but

a(l, 1) = a+ (j(€) — j1(1))/k,

h(é)s ](K)S hl(él)sl jl(ﬁl)sl

Bllt) =B+ T + kr T kry

where a, § denote «(0,0) and £5(0,0). For the relevant values of z, y lies in an
interval of length O(R?U/sN), and z lies in an interval of length O(R?U/rN),
where U is the number of minor arcs in the block, and R is a parameter related
to N by NR? < M3/T. In [4] the shorter interval (that for 2, in the case r > s)
had length less than one. In the case r > s, the integer d close to a value of 2z
in was unique. For the short arc of the resonance curve with z close to d, there
was at most one integer ¢ close to the values of y. In this paper we show that,
for many pairs of values ¢ and ¢, there is no integer ¢, and so no coincident
pair of minor arcs.

For type 1 families

att) =at 1A (mod 1), () = g+ EIA,
and for type 2 families
o, ) =a+ w (mod 1),

_ 2esl  2e1814
_ 2f0—2f16, _ £ 4,
=Pttt

o M2 o (1),
k r




Congruence Families of Exponential Sums 131

To restore the symmetry between type 1 and type 2 families, we put

2fL—-2f14

for type 2 sums, and we add O(1/r) to the approximation error.
If the point (y, 2) lies on R(£,¢;), then the point

(y - a(evgl) +o, z— ﬁ(&‘&) +ﬁ)

lies on R(0,0). Thus R(¢, ¢;) is R(0, 0) shifted by a vector (a(¥, £1)—a, B(€,41)—
3), which is 1/k times an integer vector. Any integer point (A, B) close to
R(£,¢,) corresponds to a rational point (a/k,b/k) close to R(0,0), with

a=Ak —rl+rify, b= Bk — sf + 514,
a = Ak — 2el + 2e,4;, b=Bk—-2f0+2f14;

for type 1 or type 2 families respectively.

If R(¢,£1) and R(¢2, £3) are shifted by vectors whose difference is an integer
vector, then there is an integer point close to the curve R(¢,¢;) if and only if
there is an integer point close to the curve R(£3,£¢3). We must count how many
shift vectors are congruent modulo one.

For type 1 families we consider the simultaneous congruences

rf — 11l =c {mod k), sl — s14; = d (mod k).

The fractions are related by the magic matrix:

(%)=& 5) ()
s1 T C D s r)’
where all the matrices have determinant one, so
rsy —r18 = 7(Cf + Ds) — s(Ce + Dr) = C.
Solving the congruences, we get
Cl=csy —dry (mod k), C¥¢; =cs—dr (mod k),

so only shifts modulo one with ¢s —dr = 0 (mod (C, k)) occur, and these occur
(C, k) times. Similarly for type 2 families only shifts modulo one with cf = de
(mod (2B, k)) occur, and these occur (2B, k) times. As in [7], magic matrices
in congruence subgroups play a special role.

We consider together all the minor arcs between the arcs labelled by the
reference fractions e/r and f/s. For type 2 sums the number of curves R(, {;)
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close to an integer point is at most (2B, k) times the number of integer points
(a,b) close to the enlarged curve kR{0,0) with a congruence condition

af —be =0 (mod (2B, k)).

The approximation is an expansion about the centre of the arc labelled e/r
(in the case r > s). The U consecutive minor arcs start with the arc adjacent
to the arc labelled e/r. The arc labelled f/s is not one of the U consecutive
minor arcs, and it may be distant from them. If s > r, then we take our U
consecutive arcs next to the arc labelled f/s; the calculations are analogous.

We count values of b first, then values of a. The integer b is a multiple of
(2B, f,k) and lies in an interval of length O(kR2U/rN), so there are

possible values of b. When b is chosen, then the point kz lies within an interval
of length ,
kR k
O (_’I”G(.’E) + ;) , (2.2)
by Lemma. 15.3.1 of [5], where

1

Gle) = ur(rz + s)

in the notation of Lemma 15.2.1 of [5]. Since dz/dy = —=z, the point ky lies
within an interval of length
kR? k
© (mG(m) + ;E) '

Again by Lemma 15.3.1 of [5],
|ky — a| < krG(z)/N2.
Since a is a multiple of (2B, e, k), there are

ol1+ kR? + k + krG(z)
(2B, e, k)rzG(z)  (2B,e,k)rz  (2B,e,k)N?

possible integers a. We have G(z) « NU, and for x = u/t, ¢ = ru + st,

x _ u
Sur(rz +s)  3ur(ru+ st)’

zG(z) =
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The minimum order of magnitude of * = u/t occurs at the minor arc
furthest from e/r, with

U _eu+ft e t

= X —— = = = ————— 2.3
R?2" ru+st r r(ru+st) (23)
Since the arc labelled f/s is outside the block of U arcs,
1 f eu+ft u
17 - , 2.
R2" s ru+st r(ru+st) (2.4)
We see from (2.3) and (2.4) that
s st
—=—<U, (2.5)
T TU
and so
1 < r2U
zG(z) ~ NR?

To estimate k/rz, we recall that minor arcs were grouped by the size of g
into ranges Q < g < 2Q, so ru + st < Q. If ru > st, then u < Q/r, so

k _kt _ kiU kQU

re ru R? R?”
If ru < st, then t < Q/s, and in (2.3) U < R%/rs, so

E_kt_kQ kQU

rr  ru rsu R -

The number of possible integers a has now been estimated as

krU kQU
© (1 * (2B, e, k)N + (2B,e,k)R2) : (2.6)

Multiplying the estimates (2.6) and (2.1), we see that the number of possible
integer pairs (a,b) is

2
o<1+( KRPU krU

2B, f,E)rN © (2B,e, k)N

kQU + k2R2U? + k2QU?
2B,e,k)R? = (2B,ef,k)N?2 = (2B,ef,k)rN

1
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Each pair of integers (a,b) modulo & corresponds to (2B, k) coincident pairs,
so the number of possible coincidences is

kR2U krU kQU k2R2U?  k2QU?
O((2B,k)(1+ ~ TN TRt N ) (2.7)

The choice of reference fractions depends on @, with
U= (N/Q)?,
For any two reference fractions e/r and f/s (not necessarily consecutive) with

f/s—efr ==%1/rs,
R/\/ﬁ < max(r, s) € Q.

We estimate (2.7) as
kR 0\
O<(2B,k) (1 + T +k (7\7)
N2Q 1/3 R3 2/3 N2 1/3
(%) ¢ (gw) ++(ow)

R? N2 1/3
< (2B, k)k (1 +k (m + ﬁ) . (2.8)

We have excluded coincidences between the arcs containing reference fractions.
From [9] and [5}, there are at most

k + O(k*Q/N) (2.9)
coincidences between sums of the congruence family on any given pair of minor

arcs.
Similarly the number of coincidences for type 1 families is

2/3
) ((c, k)k (1 +k (%) + %)) : (2.10)

with one less term, because there is no term k/r in (2.2).
For lower triangular matrices (2.8) is trivial. The matrix acts by

(Be)-(2 9 2)
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soe=e, f=f1,and

all, ) =a+2e(l—4;)/k  (mod 1),
B, b)) = B+2f(€~L1)/k.

If there is a coincidence, then for some point (y,2) on the resonance curve
R(0,0), corresponding to some z = u/t, the rational 2e(¢ — ¢;)/k modulo one
lies in an interval of length O(rG(z)/N?), and 2f(£ — £,)/k modulo one lies in

an interval of length
O i2_ +l
rG(z) 1)

The values of 2e(¢ — £,)/k modulo one are spaced (2e, k)/k apart, and they are
each taken (2e, k) times, so there are

0((Ze,k) (1+%)) <(2ek)+ krG( )

possible residue classes for £ — £; mod k which give coincidences. Similarly,
considering (¢, £1), we see that there are

o+ ’;’?) +3)

possible residue classes for £ — £; modulo k.
The minimum of these two bounds is

o(venn (525 1))
< (2e,k) + (2f, k) + % + kv;‘(w)‘

Including the endpoint terms from (2.9), we find that the number of coinci-
dences from all the pairs S;, Sp, of type 2 sums in the block of minor arcs
between two consecutive reference fractions given by a particular lower trian-
gular matrix is

0 ((26, k)k + (2f, k)k + ’“JZVQ s Vﬁ”) .

The corresponding bound for upper triangular matrices and type 1 sums is

0 <('r, k)k + (s, k)k + k_}?)
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3. Completing the proofs First we count coincidences. Magic matrices are
classified as follows. Type 1 consists of the identity, and a bounded number of
other matrices with small entries. Type 2 consists of upper and lower triangular
matrices. All other magic matrices are type 3, with

A/C =< |D/C| < T/M?.

In Lemma 5.2 of the sister paper [7], with the help of a theorem of Wolke
[11] on small divisors of integers, we show that the proportion of type 3 magic
matrices with d|C (or, by symmetry, with d|B) is O(N¢/d) in all cases; O(1/d)
ifd =1, orif A/C > 1 in the case d|C, or if A/C <« 1 in the case d|B;
and O((log N)#/d) for some 3 if A/C > 1/d and C > d? in the case d|C, or
if A/C < d and B >> d? in the case d|B. We use this for each factor d of
k to see that the average of (2B,k) or of (C,k) over type 3 magic matrices
is O(d(k)N¢). An easier calculation gives the average of (2B,k) over upper
triangular matrices as O(d(k)), and similarly for the average of (C,k) over
lower triangular matrices. For type 1 magic matrices we use (2.9) on each
minor arc.

A triangular matrix can give a coincidence for any arc of the sum. For
the lower triangular matrices acting on type 2 families we want the average of
(e, k) over the reference fractions e/r. We note that e/r < P/Q. There is some
choice in the construction of reference fractions. The number of minor arcs

between consecutive reference fractions should lie between bounded multiples
of W = (N/Q)%3. Fractions a/q with

q< BIR/\/W

are chosen first (B; and By below are some positive constants). If these choices
leave a long gap between consecutive fractions e/r and f/s with r > s, then
we fill it with fractions

w
ﬁ.

_ e+ ft;

T+ st;’

a;
qi

Qi+l Qi) _

di+1 qi

—~

We can make the choices in such a way that the average of (e, k) over reference
fractions is no more than a constant multiple of the corresponding average
over all Farey fractions with denominator O(R/+/W) in an interval 0 < a/q <
B, P/Q. This average is again O(d(k)). Similarly for type 1 congruence families
we can choose the reference fractions so that the average of (r, k) is O(d(k)).

Hence the number of coincidences between minor arcs with Q < ¢ < 2Q
in a congruence family of sums is

0 (d(k)k(PQ)e e ((%)m ¥ (%:)1/3 " %))
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times the estimate for coincidences between minor arcs of a single sum. The
ranges with @ =< R dominate as in [5], and the total number of coincidences is

0 (d(k)ka + k2 ((%)2/3 + (%;)1/3» (3.1)

times the estimate for the number of coincidences between minor arcs of a
single sum. The factor M€ can be omitted in some cases. The term in N?/R>
can be omitted for type 1 families. In ranges where all magic matrices are lower
triangular for type 1 families, the factor (3.1) can be replaced by

0 (d(k)k + k—;vﬁ) . (3.2)

In ranges where all magic matrices are upper triangular for type 2 families, the
factor (3.1) can be replaced by

(3.3)

o (d(k)k LJBR, ¥ ) .

~ T NRye

The cases of Theorem 1 now follow like Theorems 17.1.4 and 17.3.1 of [5],
with the choices of the parameters N and R in Lemma 17.1.2.

We begin Theorem 2 with the approximate functional equation for L(s, x)
and partial summation. We must estimate sums S, and S5 with

f(m) =T log(m/M), M < VkT.

This gives type 1 congruence families with T/M? >> 1/k. Since d runs through
all the factors of k, there is always a factor d of k for which the factor O(N*€)
occurs in the bound for type 3 matrices, except when k is prime. The three
cases of Theorem 1 are strong enough when

T2/57 « M <« T3/, (3.4)

Outside this range we use the van der Corput iteration [3]. For the differencing
step we choose complex numbers 7, of unit modulus so that 7,S; is real and
positive, the Haldsz multipliers. We apply the differencing step to 3 7,5, and
group terms after the Cauchy inequality to form congruence families again. A
power of k enters the differencing parameter. For example, using the classical
exponent pair (2/7, 4/7) after the differencing step, we get

BISe| < L8/9T1/9 pf11/18
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for M > k?. The exponent of k is less than 9/10, and this bound is strong

enough when
k2 & M <<T77/190,

overlapping the range (3.4). For M < k? we use the trivial estimate

Sy « M < TV,
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11
On Some Results Concerning the Riemann Hypothesis
ALEKSANDAR IvIC

1. Introduction A central place in Analytic Number Theory is occupied by
the Riemann zeta-function ((s), defined for Res > 1 by

()= n= [ @a-p7, (L.1)
n=1 p:prime

and otherwise by analytic continuation. It admits meromorphic continuation
to the whole complex plane, its only singularity being the simple pole s = 1
with residue 1. For general information on ((s) the reader is referred to the
monographs [7], [15], and [58]. From the functional equation

Cs) = x(s)(1 = 8), x(s) = 27" sin(F)T(L - ), (1.2)

which is valid for any complex s, it follows that {(s) has zerosat s = —2,—4,. ...
These zeros are traditionally called the “trivial” zeros of {(s), to distinguish
them from the complex zeros of {(s), of which the smallest ones (in absolute
value) are 1 + 14.134725...4. It is well-known that all complex zeros of ((s)
lie in the so-called “critical strip” 0 < ¢ = Res < 1, and if N(T') denotes the
number of zeros p = 3 + ivy (B, real) of {(s) for which 0 < v < T, then

N(T) = §T7—r log(g;—r) - 23; + % +5(T) + 0(5) (1.3)
with 1
S(T) = - arg((3 +1T) = O(log T). (1.4)

Here S(T) is obtained by continuous variation along the straight lines joining
2,2 +1T, % + 1T, starting with the value 0; if T is the ordinate of a zero, let
S(T) = S(T + 0). This is the so-called Riemann-von Mangoldt formula. The
Riemann hypothesis (henceforth RH for short) is the conjecture, stated by B.
Riemann in his epoch-making memoir [52], that very likely — sehr wahrschein-
lich - all complex zeros of {(s) have real parts equal to % For this reason
the line ¢ = 1 is called the “critical line” in the theory of ((s). The RH is
undoubtedly one of the most celebrated and difficult open problems in whole
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Mathematics. Its proof (or disproof) would have very important consequences
in multiplicative number theory, especially in problems involving the distribu-
tion of primes. It would also very likely lead to generalizations to many other
zeta-functions (Dirichlet series) sharing similar properties with ¢(s).

The RH can be put into many equivalent forms. One of the classical is
n(z) = liz + O(y/zlog ), (1.5)

where w(z) is the number of primes not exceeding z (> 2) and

T l1-¢
liz = / /
0 log t e-»0+ 14e log t

—~Z(n—1 oy +O(

for any fixed integer N > 1. One can give a purely arithmetic equivalent of the
RH without mentioning primes: We can define recursively the Mdbius function

p(n) as

SR 1.6
logN+1x) (16)

s =1, wm) =~ Y wd) (n>1).

d|n,d<n

Then the RH is equivalent to the assertion that for any given integer &k > 1
there exists an integer Ny = Ny(k) such that, for integers N > Ny, one has

> 2k< k+1
(;Mm) < Nk+L (1.7)

The above definition of u(n) is elementary and avoids explicit mention of
primes. A non-elementary definition of u(n) is through the series represen-
tation

E:N(n)n‘S = % (Res > 1), (1.8)
n=1

and an equivalent form of the RH is that (1.8) holds for ¢ > 1/2. The inequality
(1.7} is in fact the bound

Z:U'(n) <e ghte (1.9)
n<z

in disguise, where € corresponds to 1/(2k), z to N, and the 2k—th power avoids
absolute values. The bound (1.9) (see [15] and [58]) is one of the classical
equivalents of the RH. The sharper bound

| S um| <vz @>1)

n<z
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was proposed in 1897 by Mertens on the basis of numerical evidence, and later
became known in the literature as the Mertens conjecture. It was disproved in
1985 by A.M. Odlyzko and H.J.J. te Riele [47].

Instead of working with the complex zeros of {(s) on the critical line, it is
convenient to introduce the function

Z(t) = x"Y2(L +it)¢(3 +4t), (1.10)
where x(s) is given by (1.2). Since x(s)x(1 —s) = 1 and I'(s) = I'(3), it follows
that |Z(t)| = |¢(3 +it)|, Z(t) is even, and Z(t) = Z(t). Hence Z(t) is real if ¢
is real, and the zeros of Z(t) correspond to the zeros of {(s) on the critical line.
Let us denote by 0 < 71 < 72 < ... the positive zeros of Z(t) with multiplicities
counted (all known zeros are simple). If the RH is true, then it is known (see
[58]) that

logT
TYy=0(——— 1
S(T) O(loglogT)’ (1.11)
and this seemingly small improvement over (1.4} is significant: If (1.11) holds,
then from (1.3) one infers that N(T'+ H) — N(T) > 0 for H = C/loglogT
with a suitable C' > 0 and T' > Tp. Consequently we have, assuming the RH,
the bound

T+l — Mo K (1.12)

loglog v,

for the gap between consecutive zeros on the critical line. For some uncondi-
tional results on Yn41 — Yn, see [16], [17], and [25].

It turned out that already Riemann had computed several zeros of the
zeta-function and had a deep understanding of its analytic behaviour. Siegel
provided rigorous proof of a formula that had its genesis in Riemann’s work.
It came to be known later as the Riemann-Siegel formula (see (15}, [38], [56],
[68], and (8.9)) and, in a weakened form, it says that

Z(t) =2 Z n-1/2 cos(t log _th/zﬂ _t_ E) + O(t‘1/4), (1.13)

n<(t/2m)1/2 2 8

where the O-term is actually best possible, namely it is Q4(t~1/%). The
Riemann—Siegel formula is an indispensable tool in the theory of ¢(s).

There exists a large and rich literature on numerical calculations involving
¢(s) and its zeros (see [36], [44], [45], [46], and [51], which contain references
to further works). This literature reflects the development of Mathematics in
general, and of Numerical Analysis and Analytic Number Theory in particular.
Suffice to say that it is known that the first 1.5 billion complex zeros of {(s) in
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the upper half-plane are simple and do have real parts equal to 1/2, as predicted
by the RH. Moreover, many large blocks of zeros of much greater height have
been thoroughly investigated, and all known zeros satisfy the RH. However,
one should be very careful in relying on numerical evidence in Analytic Number
Theory. A classical example for this is the inequality 7(z) < liz (see (1.5) and
(1.8)), noticed already by Gauss, which is known to be true for all z for which
the functions in question have been actually computed. But the inequality
m(z) < liz is false; not only does 7(z) — liz assume positive values for some
arbitrarily large values of z, but J.E. Littlewood {35] proved that

loglog |
r(z) = liz + Qs (f%g_) .

By extending the methods of R. Sherman Lehman [55], H.J.J. te Riele [50]
showed that m(z) < liz fails for some (unspecified) z < 6.69 x 1037°. For
values of ¢t which are this large we may hope that Z(t) will also show its true
asymptotic behaviour. Nevertheless, we cannot compute by today’s methods
the values of Z(t) for ¢ this large, actually even ¢ = 101 seems out of reach
at present. To assess why the values of ¢t where Z(t) will “really” exhibit its
true behaviour must be “very large”, it suffices to compare (1.4) and (1.11)
and note that the corresponding bounds differ by a factor of loglog T, which is
a very slowly varying function.

The aim of this text is to discuss some topics and recent results connected,
one way or another, with the RH. The topics will include the Lehmer phe-
nomenon, the Davenport-Heilbronn zeta-function, mean and large values on
the critical line, and zeros of a class of convolution functions connected with
¢(s). This choice is to a large extent motivated by the author’s own research
in recent years, but anyway all important aspects of recent research on the RH
certainly cannot be covered in one paper.

Acknowledgement 1 want to thank Professors M. Jutila, K. Matsumoto,
Y. Motohashi and A.M. Odlyzko for valuable remarks on an earlier version of
this text.

2. Lehmer’s phenomenon The function Z(t), defined by (1.10), has a
negative local maximum —0.52625... at t = 2.47575.... This is the only known
occurrence of a negative local maximum, while no positive local minimum is
known. Lehmer’s phenomenon (named after D.H. Lehmer, who in his works
[33], [34] made significant contributions to the subject) is the fact (see [46] for
a thorough discussion) that the graph of Z(t) sometimes barely crosses the ¢-
axis. This means that the absolute value of the maximum or minimum of Z(t)
between its two consecutive zeros is small. For instance, A.M. Odlyzko found
1976 values of n such that |Z(2(v, + n41))| < 0.0005 in the block that he
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investigated (in the version of [46] available to the author, but Odlyzko kindly
informed him that many more examples occur in the computations that are
going on now). Several extreme examples are also given by van de Lune et al.
in [36]. The Lehmer phenomenon shows the delicacy of the RH. For should it
happen that, for t > to, Z(t) attains a negative local maximum or a positive
local minimum, then the RH would be disproved. This assertion follows (see
[7]) from the following

Proposition If the RH is true, then the graph of Z'(t)/Z(t) is monotonically
decreasing between the zeros of Z(t) fort > tg.

Namely suppose that Z(t) has a negative local maximum or a positive local
minimum between its two consecutive zeros v, and v,+1. Then Z'(t) would
have at least two distinct zeros z; and x5 (z; < z3) in (7Vn,Yn+1), and hence
so would Z'(t)/Z(t). But we have

Z'(z1) _ Z'(x2)
Z(@1) ~ Z(32)’

which is a contradiction, since Z'(z1) = Z'(z3) =
To prove the Proposition, consider the function

£(s) = (3—1)77'3/21“( )¢(s),

so that £(s) is an entire function of order one (see Chapter 1 of [15]), and one
has unconditionally

/(g 1 1
6() +Z ;=5 +3) B=le2+slegr—1-50, 21)

where p denotes complex zeros of {(s) and Cjy is Euler’s constant. By (1.2)

T#I20(5 + Lit) (5 + it)
(3 + i) ’

Z(t) = x"V2(§ +it)¢(E +it) =
so that we may write
£(3 +it) = —f(1)Z(), f(t):= %7?—1/4(152 + HINE + Lay)).

Consequently logarithmic differentiation gives

2 _ _ £ €(5 +1t)
zZo) " T £(3 +it)

(2.2)
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Assume now that the RH is true. Then by using (2.1) with p = %-{-i’y, §= %+it
we obtain, if t # v,

sel( 1 i ’
() = T map < Ctosios” ©>0
2 il

for t > tg, since (1.12) holds. On the other hand, by using Stirling’s formula
for the gamma-function and log |z| = Re log z it is readily found that

d(f'@)/ft)) 1
dt <P

so that from (2.2) it follows that (Z'(t)/Z(t))’ < 0 if t > t4, which implies the
Proposition. Actually the value of ty may be easily effectively determined and
seen not to exceed 1000. Since Z(t) has no positive local minimum or negative
local maximum for 3 < t < 1000, it follows that the RH is false if we find
(numerically) the occurrence of a single negative local maximum (besides the
one at t = 2.47575...) or a positive local minimum of Z(t).

3. The Davenport—Heilbronn zeta-function This is a zeta-function (Di-
richlet series) which satisfies a functional equation similar to the classical func-
tional equation (1.2) for {(s), but for this zeta-function the analogue of the RH
does not hold. This function was introduced by H. Davenport and H. Heilbronn
[6] as

f(s)=57°(C(s, 5) +tan8((s, 3) ~tanf((s, ) = ¢(s,5)),  (3.1)
where @ = arctan((1/10 — 2v/5 — 2)/(v/5 — 1)) and, for Res > 1,

o0

C(s,a)=2(n+a)_s (0<a<l)

n=0

is the familiar Hurwitz zeta-function, defined for Re s < 1 by analytic contin-
uation. With the above choice of 6 (see [6], [31], or [58]) it can be shown that
f(s) satisfies the functional equation

fo = X@fa-a), X =ZE e

whose analogy with the functional equation (1.2) for {(s) is evident. Let 1/2 <
01 < 03 < 1. Then it can be shown (see Chapter 6 of [31]) that f(s) has
infinitely many zeros in the strip 01 < ¢ = Res < o3, and it also has (see
Chapter 10 of [58]) an infinity of zeros in the half-plane ¢ > 1, while from the
product representation in (1.1) it follows that {(s) # 0 for ¢ > 1, so that in the
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half-plane ¢ > 1 the behaviour of zeros of {(s) and f(s) is different. Actually
the number of zeros of f(s) for whicho >1and0<t=Ims <Tis > T, and
similarly each rectangle 0 <t < T,1/2 < 01 < ¢ < 02 < 1 contains at least
c(o1,02)T zeros of f(s). R. Spira [57] found that 0.808517 + 85.699348: (the
values are approximate) is a zero of f(s) lying in the critical strip 0 < o < 1,
but not on the critical line ¢ = 1/2. On the other hand, A.A. Karatsuba [30]
proved that the number of zeros % + iy of f(s) for which 0 < v < T is at least
T(log T)/?=¢ for any given € > 0 and T > To(e). This bound is weaker than
A. Selberg’s classical result [53] that there are >> T log T zeros 3 + i of {(s)
for which 0 < v < T'. From the Riemann-von Mangoldt formula (1.3) it follows
that, up to the value of the «-constant, Selberg’s result on {(s) is best possible.
There are certainly < T log T zeros % + 47y of f(s) for which 0 <y < T and it
may be that almost all of them lie on the critical line ¢ = 1/2, although this
has not been proved yet. The Davenport-Heilbronn zeta-function is not the
only example of a zeta-function that exhibits the phenomena described above,
and many so-called Epstein zeta-functions (see Bombieri and Hejhal [5]) also
have complex zeros off their respective critical lines.

What is the most important difference between {(s) and f(s) which is
accountable for the difference of distribution of zeros of the two functions,
which occurs at least in the region ¢ > 17 It is most likely that the answer
is the lack of the Euler product for f(s), similar to the one in (1.1) for {(s).
But f(s) can be written as a linear combination of two L-functions which have
Euler products (with a common factor) and this fact plays the crucial réle in
Karatsuba’s proof of the lower bound result for the number of zeros of f(s). In
any case the example of f(s) shows that it is not clear whether the influence
of the Euler product for {(s) will extend all the way to the line ¢ = 1/2 and
produce the zero-free region predicted by the RH.

4. Mean value formulas on the critical line Mean values of |((5 + it)|
were subject of extensive research in recent years, thanks largely to the applica-
tion of poweful methods from spectral theory (see Y. Motohashi’s fundamental
monograph [43]). The connection with the RH is only indirect, as will be seen
a little later. For k > 1 a fixed integer let

T
/ (3 +it)|%* dt = T P2 (log T) + Ei(T), (4.1)
0
where for some suitable coefficients a;  one has
k2
Pa(y) = ajky’. (4.2)
=0

An extensive literature exists on Ey(T), especially on E;(T) = E(T) (see
F.V. Atkinson’s classical paper [2]), and the reader is referred to [19] for a
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comprehensive account. It is known that
Pi(y) =y +2Cp ~ 1 — log(2m),

and P4(y) is a quartic polynomial whose leading coefficient equals 1/(27?) (see
[21] for an explicit evaluation of its coefficients). One hopes that

Eu(T) =o(T) (T — oo) (4.3)

will hold for each fixed integer k > 1, but so far this is known to be true only in
the cases k = 1 and k = 2, when Ey(T) is a true error term in the asymptotic
formula (4.1). In fact heretofore it has not been clear how to define properly
(even on heuristic grounds) the values of ajx in (4.2) for £ > 3 (see [23] for
an extensive discussion concerning the case k = 3). The connection between
E(T) and the RH is indirect, namely there is a connection with the Lindeldf
hypothesis (LH for short). The LH is also a famous unsettled problem, and it
states that

(3 +it) < t° (4.4)

for any given ¢ > 0 and t > to > 0 (since {(3 +it) = {(§ — it), t may be
assumed to be positive). It is well-known (see [58] for a proof) that the RH
implies

(3 +1it) < exp(lfgll(:)ggtt) (A >0,t > tp), (4.5)
so that obviously the RH implies the LH. In the other direction it is unknown
whether the LH (or (4.5)) implies the RH. However, it is known that the LH has
considerable influence on the distribution of zeros of {(s). If N(c,T) denotes
the number of zeros p = B + iy of {(s) for which ¢ < 8 and |y| < T, then it is
known (see Chapter 11 of [15]), that the LH implies that N(c,T) <« T?-20+¢
for 1/2 < o <1 (this is a form of the density hypothesis) and N (2 +6,T) <« T,
where € = £(6) may be arbitrarily small for any 0 < 6§ < 1/4.

The best unconditional bound for the order of {(s) on the critical line,
known at the time of the writing of this text, is

C(3 +it) <. tote (4.6)

with ¢ = 89/570 = 0.15614... . This is due to M.N. Huxley [12], and
represents the last in a long series of improvements over the past 80 years.
The result is obtained by intricate estimates of exponential sums of the type
Y Nen<an ™ (N < V), and the value ¢ = 0.15 appears to be the limit of
the method.
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Estimates for Ex(T) in (4.1) (both pointwise and in the mean sense) have
many applications. From the knowledge about the order of Ey(T) one can
deduce a bound for {(3 + iT) via the estimate

1, (k24+1)/(2k) 1/(2k)
¢(5 +1T) < (logT) + (1Othe[Tn_l?',}§"+1] |Ex(t)]) . (47)

which is Lemma 4.2 of [19]. Thus the best known upper bound
E(T) = E\(T) < T™/*(log T')97/227 (4.8)

of M.N. Huxley [13] yields (4.6) with ¢ = 36/227 = 0.15859. .. . Similarly the
sharpest known bound

Ey(T) < T*?10g°T  (C>0) (4.9)

of Y. Motohashi and the author (see [19], [26], and [28]) yields (4.6) with
the classical value ¢ = 1/6 of Hardy and Littlewood. Since the difficulties
in evaluating the left-hand side of (4.1) greatly increase as k increases, it is

reasonable to expect that the best estimate for ¢ (% +1T') that one can get from
(4.7) will be when k = 1.

The LH is equivalent to the bound

T
/ 1€ +it)|*F dt <pe T (4.10)
0

for any k > 1 and any € > 0, which in turn is the same as
Ey(T) <k, e TV (4.11)

The enormous difficulty in settling the truth of the LH, and so a fortiori of the
RH, is best reflected in the relatively modest upper bounds for the integrals in
(4.10) (see Chapter 8 of [15] for sharpest known results). On the other hand, we
have Q-results in the case k = 1,2, which show that Ey(T) and Ex(T") cannot
be always small. Thus J.L. Hafner and the author [10], [11] proved that

E\(T)=9Q4 ((T log T)%(log log T)w_“e_c log log l°gT) (4.12)
and )
Ei(T)=0Q. (T% eXp(M)) (4.13)
(logloglog T)*
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for some absolute constants C,D > 0. Moreover, the author has proved in
[18] that there exist constants A, B > 0 such that, for T > Tp, every interval
[T, T+ BVT ] contains points t1, 2 for which

Ei(t1) > A4, Ey(ts) < —AtY*.

Numerical investigations concerning F;(T) and its zeros were carried out by
H.J.J. te Riele and the author [29].

The Q-result
Ey(T) = Q(VT) (4.14)

was proved by Y. Motohashi and the author (see [26], [28], and Chapter 5
of [19]). The method of proof involved differences of values of the functions
E5(T), so that (4.14) was the limit of the method. The basis of this, as well
of other recent investigations involving E5(T), is Y. Motohashi’s fundamental
explicit formula for

(Avm)~? /oo € + it +iT)[* e~ @2 qt (A > 0), (4.15)

—00

obtained by deep methods involving spectral theory of the non-Euclidean Lap-
lacian (see [39], [40], [42], [43], and Chapter 5 of [19]). On p. 310 of [19] it was
pointed out that a stronger result than (4.14), namely

limsup |Ey(T)|T~Y? = 00
T—oo

follows if certain quantities connected with the discrete spectrum of the non-
Euclidean Laplacian are linearly independent over the integers. Y. Motohashi
[41] (see also [43]) unconditionally improved (4.14) by showing that

Ey(T) = Q1 (VT). (4.16)

The author [24] recently reproved (4.16) and showed that there is a sign change
of E5(t)t~/? in every interval of the form [T, AT] for a suitable constant A > 1
and T > Tp. The key step in proving (4.16) is to show that the function

22(6) = | Tl int et de,

defined initially as a function of the complex variable ¢ for Re§ > 1, is mero-
morphic over the whole complex plane. In the half-plane Re£ > 0 it has a pole
of order five at £ = 1, infinitely many simple poles of the form % + x4, while the
remaining poles for Re£ > 0 are of the form p/2, ((p) = 0. Here k2+1 is in the
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discrete spectrum of the non-Euclidean Laplacian over the full modular group
(see [41] for the details). By using (4.1) and integration by parts it follows that

Zo(€) =C + ¢ /loo Py(logt)t=%dt + ¢ /100 Ex(t)t=¢1dt (4.17)

with a suitable constant C, where the integrals are certainly absolutely conver-
gent for Re¢ > 1 (actually the second for Re& > 1/2 in view of (4.20)). Now
(4.16) is an immediate consequence of (4.17) and a classical oscillation result
of E. Landau (see [1] for a proof).

It may be asked then how do the Q-results for E1(T") and E5(T) affect the
LH, and thus indirectly the RH? One may conjecture that these Q-results lie
fairly close to the truth, in other words that

Bi(T) = O (T5F+*) (4.18)

holds for £ = 1,2. This view is suggested by estimates in the mean for the
functions in question. Namely the author [14] proved that

T
/ IEi(t)Adt <. TH 4% (0< A< 3745), (4.19)
1

and the range for A for which (4.19) holds can be slightly increased by using
the best known estimate (4.6) in the course of the proof. Also Y. Motohashi
and the author [27], [28] proved that

T T
/ Ea(t)dt < T%2, / B2t dt < T21og®T (C>0).  (4.20)
0 0

The bounds (4.19) and (4.20) show indeed that, in the mean sense, the bound
(4.18) does hold when k = 1,2. Curiously enough, it does not seem possible to
show that the RH implies (4.18) for k < 3. If (4.18) holds for any k, then in
view of (4.7) we would obtain (4.6) with the hitherto sharpest bound ¢ < 1/8.
What can one expect about the order of magnitude of Ex(T) for k > 37 It was
already mentioned that the structure of Ex(T") becomes increasingly complex
as k increases. Thus perhaps we should not expect a smaller exponent than k/4
in (4.18) for k > 3, as it would by (4.7) yield a result of the type u(1/2) < 1/8,
which in view of the Q-results is not obtainable from (4.18) when k = 1,2.
Should this be true, then by analogy with the cases £ = 1,2 one would be led
to conjecture that

E(T) = Q(T** (4.21)

holds for any fixed k > 1. But already for k = 5 the omega-result (4.21) yields,
in view of (4.1),

T
| 1t +inp = aums, (4.22)
0
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which contradicts (4.10) and disproves both the LH and the RH. It would be
of great interest to obtain more detailed information on Fy(7) in the cases
when k = 3 and especially when k = 4, as the latter probably represents a
turning point in the asymptotic behaviour of mean values of |{ (% +it){. In [23]
the author proved that E3(T) <. T'*¢ conditionally, that is, provided that a
certain conjecture involving the ternary additive divisor problem holds, which
concerns the sum

D ds(n)ds(n+f)  (F21),

n<N

where d3(n) is the divisor function generated by ¢3(s). Y. Motohashi ([39]
p. 339, [41], and [43]) proposes, on heuristic grounds based on analogy with
explicit formulas known in the cases £ = 1,2, a formula for the analogue of
(4.15) for the sixth moment, and also conjectures (4.21) for k = 3.

5. Large values on the critical line Another topic of extensive research
in recent years are large values of |¢ (% + 4t)|. R. Balasubramanian and K.
Ramachandra (see (3], [4], [48], and [49]) proved unconditionally that

|€(%+it)|>exp(%< log H )1/2) (5.1)

Tgrtr%aqﬁH loglog H

for T > Ty and loglogT « H < T, and probably on the RH this can be
further improved (but no results seem to exist yet). Anyway (5.1) shows that
| Z(t)| assumes large values relatively often. On the other hand, on the RH one
expects that the bound in (1.11) can be also further reduced, very likely (see
[46]) to

S(T) <. (log T)7+e. (5.2)
That is, H.L. Montgomery [37] proved, assuming the RH, that
logT \1/2
S(T) _Qi((loglogT) )’

which is in accord with (5.2). K.-M. Tsang [60], improving a classical result of
A. Selberg [53], has shown that one has unconditionally

S(T) = Qi((%)lﬁ).

K.-M. Tsang [60] also proved that unconditionally

logT

T<t<2T <t<oT
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which shows that either [¢(5 +it)| or |S(t)| must assume large values in [T, 2T).
It may be pointed out that the calculations relating to the values of S(T') (see,
e.g., [45], [46]) show that all known values of S(T') are relatively small. In other
words they are not anywhere near the values predicted by the above Q)-results,
which supports the view that the values of s for which {(s) will exhibit its true
asymptotic behaviour must be very large.

If (5.2) is true on the RH, then clearly (1.12) can be improved to

T+l — Tn Ke (10g7n)6—1/2' (5'3)

This means that, as n — oo, the gap between the consecutive zeros of Z(t)
tends to zero not so slowly. Now take H = T in (5.1), and let ¢o be the point
in [T,2T] where the maximum in (5.1) is attained. This point falls into an
interval of length < (log T)¢~1/2 between two consecutive zeros, so that in the
vicinity of ¢o the function Z(t) must have very large oscillations, which will be
carried over to Z'(t), Z"(t),. .. etc. For example, for T = 10%°%° we shall have

|Z(to)] > 2.68 x 101, (5.4)

while (log T)~1/2 = 0.00932. .., which shows how large the oscillations of Z(t)
near to will be. It seems that ((s) is the only zeta-function for which we know
sharp results on the critical line of the type discussed above.

6. A class of convolution functions It does not appear easy to put the
discussion of Section 5 into a quantitative form, and to see what will be the
consequence of large oscillations of Z(t) for the distribution of its zeros. The
basic idea, used in [20] and [22], is to connect the order of Z(t) with the
distribution of its zeros and the order of its derivatives (see (7.4)). A.A. Lavrik
[32] proved the useful result that, uniformly for 0 < k < 1logt, one has

12 k
W =2 Y n/2(log U2
n<(t/2m)/2 "
(t/2m)'/? t m mk —1/4/3 k+1
x cos(tlog ~ 57573 ) -I-O(t (3logt) ) (6.1)

The range for which (6.1) holds is large, but it is difficult to obtain good uniform
bounds for Z(*)(t) from (6.1). To overcome this obstacle the author introduced
in [20] the class of convolution functions

x

Mz f(t) = / 2t +2)1(5) da, (6.2)
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where G > 0, and f(z) (> 0) is an even function belonging to the class of
C>-functions f(zx) called S? by Gel’fand and Shilov [9]. The functions f(x)
satisfy for any real x the inequalities

|z £ (z)] < CA*BIR*q?®  (k,q=0,1,2,...) (6.3)

with suitable constants A, B, C > 0 depending on f alone. For o = 0 it follows
that f(x) is of bounded support, namely it vanishes for |z| > A. For o > 0 the
condition (6.3) is equivalent (see [9]) to the condition

|f@ ()] < CBYg® exp(—ale|V/*) (o = a/(eA¥?)) (6.4)

for all z and ¢ > 0. Let us denote by E? the subclass of S? with a > 0 consisting
of even functions f(z) such that f(z) is not the zero-function. It is shown in
[9] that S# is non-empty if 3 > 0 and a + B > 1. If these conditions hold then
E? is also non-empty, since f(—z) € S2 if f(z) € S2, and f(z) + f(-2) is
always even.

One of the main properties of the convolution function Mz ¢(t), which
follows by k-fold integration by parts from (6.2), is that for any integer k& > 0

MEY O = Mz, = (-1/6)* [ "zt E) e (65)

—00

This relation shows that the order of M) depends only on the orders of Z
and f(), and the latter is by (6.4) of exponential decay, which is very useful
in dealing with convergence problems etc. The salient point of our approach is
that the difficulties inherent in the distribution of zeros of Z(t) are transposed
to the distribution of zeros of Mz ¢(t), and for the latter function (6.5) provides
good uniform control of its derivatives.

Several analogies between Z(t) and Mz f(t) are established in [20], espe-
cially in connection with mean values and the distribution of their respective
zeros. We shall retain here the notation introduced in [20], so that N (T)
denotes the number of zeros of Mz ¢(t) in (0,T], with multiplicities counted.
If f(z) € EB, f(z) > 0, and G = §/log(T/(2m)) with suitable § > 0, then
Theorem 4 of {20] says that

NM(T+V)—NM(T—V)>>I(—)Z—T, V =T ¢=0.329021..., (6.6)

for any given £ > 0. The nonnegativity of f(z) was needed in the proof of this
result. For the function Z(t) the analogous result is that

No(T+V)—=No(T ~V)>»VlegT, V=T ¢=0329021..., (6.7)
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where as usual No(T') denotes the number of zeros of Z(t) (or of {(3 + it))
in (0,T], with multiplicities counted. Thus the fundamental problem in the
theory of {(s) is to estimate N(T') — No(T), and the RH may be reformulated
as N(T) = No(T) for T > 0. The bound (6.7) was proved by A.A. Karatsuba
(see [31] for a detailed account). As explained in [20], the bound (6.6) probably
falls short (by a factor of log® T') from the expected (true) order of magnitude
for the number of zeros of Mz ¢(t) in [T'—V, T+ V). This is due to the method
of proof of (6.6}, which is not as strong as the classical method of A. Selberg
[563] (see also Chapter 10 of [58}).

In what follows we shall need the following technical result, which is proved
similarly to Lemma 3 in [20]. We state it here as

Lemma 1 IfL = (logT)i*, P = /T/(21),0<G<1,L KV <T3, and
f(z) € EB, then

T+VL 20,2
/ My s (t)e= ="V " at
L

> GV{If(% log P)| + O(T "4 + V2T=%/42) . (6.8)
Here and in the sequel f(x) is the Fourier transform of f(z), namely

fla) = / F(u)e2= du,

7. Technical preparation In this section we shall lay the groundwork for
the investigation of the distribution of zeros of Z(t) via the convolution func-
tions Mz ¢(t). To do this we shall first briefly outline a method based on a
generalized form of the mean value theorem from the differential calculus. This
can be conveniently obtained from the expression for the n-th divided difference
F(z)
(z-z)(z—22) (= zp)
F(z,) - F(zn)
(x1 —x)(T1 — 2) - (T1 — Tn) (Tn —z)(Tn —21) + (Tn — Tn-1)

where z; # z; if ¢ # j, and F(t) is a real-valued function of the real variable ¢.
We have the representation, with x,4; = z,

[, 21,22, 5] =

[z, 21,22, -, 2p]
1 t1 tn_1 n

=/ / / F(n)(ml—}-Z(xuﬂ _xl/)tll) dtndtl
0 Jo 0 —~

_F

— (7.1)
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if F(t) € C™[I], € = &(z, 21, --,2y,), and I is the smallest interval containing
all the points Z,T1,-+,Tn. If we suppose additionally that F(z;) = 0 for
j = 1,--+,n, then on comparing the two expressions for [z,z1,z2, -, Zn] it

follows that )
Fy=(z—z1{z —x2) - (x — zp) n!(é), (7.2)

where £ = £(z) if we consider zi,---,z, as fixed and = as a variable. The
underlying idea is that, if the (distinct) zeros z; of F(x) are sufficiently close
to one another, then (7.2) may lead to a contradiction if F(z) is assumed to
be large and one has good bounds for its derivatives.

To obtain the analogue of (7.2) when the points z; are not necessarily
distinct, note that if F(2) is a regular function of the complex variable z in
a region which contains the distinct points z,x;,---,z,, then for a suitable
closed contour C containing these points one obtains by the residue theorem

_L F(2) )
[z, 21,22, ,zp] = 27ri/c(z—m)(z—w1)---(z—xn) dz. (7.3)

By comparing (7.1) and (7.3) and using analytic continuation we obtain

F(@)] < [] lo - =l ) (5)' (€ = £(@)). (7.4)

k=1

Now we shall apply (7.4) to F(t) = Mz ¢(t), f(z) € EZ, with n replaced
by k, to obtain

IME) ()|
|Mz,s(t)| < H Iy — tlT’ (7.5)

t—H<~<t+H

where v runs over the zeros of Mz(t) in [t — H,t + H|, 7 = 7(t,H) €
[t — H,t+ H], |t — T| < TY?*%, and k = k(t, H) is the number of zeros of
Mz ¢(t) in [t — H,t + H]. We shall choose

_ Alogg T N
H= log, T (log, T' = log(log, ., T)) (7.6)

for a sufficiently large A > 0. One intuitively feels that, with a suitable choice
of G and f (see (8.1) and (8.2)), the functions N(T') and Nps(T") will not differ
by much. Thus we shall suppose that the analogues of (1.3) and (1.11) hold
for Nas(T), namely that

Nu(T) = - log(a-) — o+ Su(T) + O() (7.7)
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with a continuous function Sy (T) satisfying

_ logT
Su(T) = O(log logT)’ (7.8)

although it is hard to imagine what should be the appropriate analogue for
Su(T) of the defining relation S(T) = n~'arg((3 + iT) in (1.4). We also
suppose that

/T T+U(SM(t + H) — Sy (t — H))>™dt < U(log(2 4+ HlogT))™ (7.9)

holds for any fixed integer m > 1, T* < U < T, % <a<1,0<H<1. Such
a result holds unconditionally (even in the form of an asymptotic formula) if
Sm(T) is replaced by S(T'), as shown in the works of A. Fujii [8] and K.-M.
Tsang [59]. Thus it seems plausible that (7.9) will also hold. It has already
been mentioned that it is reasonable to expect that S(T) and Sy (T") will be
close to one another. The author feels that this “closeness” should hold also in
the mean sense, and that instead of (7.9) one could impose a condition which
links directly Sp(T") and S(T'), such as that for any fixed integer m > 1 one
has

T+U
/ (Sa(t) — S(8))2™dt < U(loglog T)™, (7.10)
T
where T° < U < T, % < a <1 If (7.7) holds, then

k=Num(@t+H)— Ny(t—H)+0(1)
= glog(—Qj—;r)+SM(t+H)—SM(t—H)+O(1). (7.11)

To bound from above the product in (7.5) we proceed as follows. First we

have trivially
II hw-t<t
[y=t|<1/log, T

The remaining portions of the product with t — H < v < t — 1/log, T and
t+1/log, T < < t+ H are treated analogously, so we shall consider in detail
only the latter. We have

log( I y-tl) = > log(y — t)

t+1/log, T<vy<t+H t+1/log, T<~y<t+H
t+H
= / log(u ~ t) dNps(u).
t+1/log, T+0
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By using integration by parts and (7.8) we shall obtain then

Lemma 2 Suppose that (7.7) and (7.8) hold. If v denotes zeros of Mz (t),
H is given by (7.6) and |T —t| < TV/?+¢ then

I h-d
t—H <y <t+H

1T logy T
Sexp{;log(%)-(HlogH—H+O(lZ§zT))}. (7.12)

8. The asymptotic formula for the convolution function In this sec-
tion we shall prove a sharp asymptotic formula for Mz ¢(t), which is given by
Theorem 1. This will hold if f(z) belongs to a specific subclass of functions
from ES (o > 1 is fixed), and for such Mz f(t) we may hope that (7.7)—(7.10)
will hold. To construct this subclass of functions first of all let p(x) > 0 (but
p(z) #Z 0) belong to E§. Such a choice is possible, since it is readily checked
that f2(x) € S8 if f(x) € S2, and trivially f2(x) > 0. Thus () is of bounded
support, so that ¢(z) = 0 for || > a for some a > 0. We normalize ¢(z) so
that ffooo @(z) dxr = 1, and for an arbitrary constant b > max(1, a) we put

z+b
O(z) = / @(t) dt.
z—b
Then 0 < ®(x) < 1, () is even (because p(x) is even) and nonincreasing for

z > 0, and
_Jo if |zt >2b+a,
®(z) = {1 if Jz|<b-a.

One can also check that () € S§ implies that &(z) € S§. Namely |2*®(x)| <
(b+ a)*, and for ¢ > 1 one uses (6.3) (with k = 0, f(9 replaced by ¢(9~1 and
(a, B) = (0,)) to obtain
|2* @@ ()] < (b + a)*89 ()]
< (b+a)* ([ D(z + )] + "D (z - b))

< (b+ a)k2CBI(g — 1)@V < %(b +a)*Big™.

Hence (6.3) will hold for @ in place of f, with A = b+ a and a suitable C. Let

00

flz):= /oo P(u)e™ 2 dy = / ®(u) cos(2mzu) du.

—00 —oo
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A fundamental property of the class S? (see [9]) is that — S5, where in
general U = {f(z) : f(z) € U}, and f(z) is the Fourier transform of f(z).
Thus f(z) € SY, f(z) is even (because ®(x) is even), and by the inverse
Fourier transform we have f(z) = ®(z). The function f(x) is not necessarily
nonnegative, but this property is not needed in the sequel.

Henceforth let P

G=r——

log(T/(27))

In view of (1.3) it is seen that, on the RH, G is of the order of the average
spacing between the zeros of Z(t). If f(z) is as above, then we have

(6 > 0). (8.1)

Theorem 1 For [t -T| < VL, L = log?*e T, log°T < V < T%/logT,
0<é<2n(b—a) and any fited N > 1 we have

Mz¢(t) = G(Z(t) + O(T~M)). (8.2)

Proof. Before we give the proof of (8.2) it may be remarked that the hypotheses
on t in the formulation of the theorem may be relaxed.

In order to prove (8.2) it will be convenient to work with the real-valued
function 6(t), defined by

Z(t) = PO¢(S +it) = x V2 +it)((§ +1it), (8.3)
and one has from the functional equation (1.2)
t
6(t) =Im logI'(§ + 34t) — 3 log. (8.4)

We have the explicit representation (see Chapter 3 of [31])

_t i ™

o) = 5 log% - S -2 HAW (8.5)
with (¢(z) =z — [z] — 1/2)
Aft) := :ilog(l + 21%) + iarctanélz + %/Ooo @—:b_(g—;%. (8.6)

This formula is very useful, since it allows one to evaluate explicitly all the
derivatives of 6(t). For t — oo it is seen that A(t) admits an asymptotic
expansion in terms of negative powers of ¢, and from (8.4) and Stirling’s formula
for the gamma-function it is found that (B, is the k-th Bernoulli number)

o~ _ (2% —1)|Bag|
AW n; 2% (2n — 1)2niZn1 ®.7)
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The meaning of (8.7) is that, for an arbitrary integer N > 1, A(t) equals the

sum of the first N terms of the series in (8.7), plus the error term which is
On(t~2N-1). In general we shall have, for k > 0 and suitable constants c, »,

AP (1) ch atl =2k, (8.8)

For complex s not equal to the poles of the gamma-factors we have the
Riemann-Siegel formula (this is equation (56) of C.L. Siegel [56])

'm:c —s
—-s2 _ . —s8/2
1r(E)(s) = 70 )/ e
—imz? s—1
(s_l)/2P 1—s € T ) )
ereveregt) [ e )

Here 0 1 (resp. 0 \, 1) denotes a straight line which starts from infinity in
the upper complex half-plane, has slope equal to 1 (resp. to —1), and cuts the
real axis between 0 and 1. Setting in (8.9) s =  + it and using (8.4), we have
that

Z(t) = Im(e*“’(ﬂ /0 v (2, t)dz), (8.10)

where :
—~imz® ,—1/2+it
S(e,p) = T
sin(rwz)
The contribution of the portion of the integral in (8.10) for which |z} > logt is
& exp(—log?t), hence we obtain

Z(t) = Im(e‘w(t) / E(z,t)dz) +O(exp(~log?t)).  (8.11)
N1, |zl <log t

From the decay property (6.4) it follows that

]OgZa—l t

Mz ;(t) = / Z(t + z)f(%) dx + O(exp(—clog®t)), (8.12)

— log2-1¢

where ¢ denotes positive, absolute constants which may not be the same ones
at each occurrence. Thus from (8.10) and (8.12) we obtain that

]0g2a—1

Mz ¢(t) = Im(/ Z(z,t) / e'ie(t”)z“f(i) dz dz)
0N\ 1,|z|<log ¢ —log2a—1¢ G

+ O(exp(—clog? t)). (8.13)
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By using Taylor’s formula we have
0t +z) = 0(t) + = log 7=t zA'(t) + R(t,z) (8.14)

with A’(t) < ¢~2 and

= AN
R(t,z) = Z<2n(n—1t" Tt ):c '
n=2
Now we put .
e ) = 14 S(t,2), (8.15)

say, and use (8.5), (8.6), (8.8), and (8.14). We obtain

00 Nk pk =)
—1)"R*(t,x n
Sttz) =3 (_)# =3 on(t)a, (8.16)
k=1 ’ n=2
where each g,(t) € C*°(0,00) has an asymptotic expansion of the form
o
n(t) ~ Y dpptF DA (3 o) (8.17)
k=0

with suitable constants d,, . From (8.13)—(8.15) we have

Mzs(®) = Im (I + 1) + O(e~<bs"), (8.18)
where
I :=/ e~ 952, 1)
0N 1,|z|<log t
log?>~1¢ A z

X /—1og2° 1 texp(—z argz + 2i1ra:—é)f(5) dzdz (8.19)

with A
A= <& lo l2le

ar 8 NI
and I is the same as I, only it has the extra factor S(¢, z) in the inner integral.
We have

I = / DT H)h(z) dz + O(e= 18" t),
N1 jzl<logt
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where o
h(z) = G/ e~Cvars2 f(y) exp (2imyA) dy

= (—Gargz)* [* .
=G}, 0 / y" f(y) exp (2imyA)dy,
n=0 —00

n

where change of summation and integration is justified by absolute convergence.
But

/_ - f(y) exp (2iryA) dy = f(A) =1

for § < 2n(b — a), since

b t '
A= W(l"g@ ol + 20)

6 6
= (21—77 +0(1)) < o <b-a,
and f(m) =1 for |z| < b — a. Moreover, for n > 1 and |z] < b — @ we have
oo
@) = emiy [y gy =o.
— 00
Hence we obtain
IL = G/ e~ WOF(2, t)dz + O(e_°l°gzt). (8.20)
o\ 1

Similarly from (8.16) we have

N
I = Z e‘w(t)t‘"/ E(z,t)
n=1 0N\ 1,|z|<log t
2a—lt
x

log A
X /—log2°-1 t P, (z) exp(——x arg z + Qzﬂxa)f(G)dxdz

2a—1 t

Lo L/log (1+ N+2)|f(£)|,/ :( t) i ’d
tN+1 ]0g2a—l t * G 0\‘1 - Z, z z x

+ O(e—clog2 t),

where each P,(x) is a polynomial in z of degree n > 2. The integral over z in
the error term is similar to the one in (8.10). Hence by the residue theorem we

have, for @ = [\/t/2n],

Q
/ E(z’t)ziIdZZQﬂ"l.ZReS-{—/ ..‘dZ,
0N\ 1 JeNe+
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similarly as in the derivation of the Riemann-Siegel formula. It follows that
the left-hand side is < t1/4. Thus analogously as in the case of I; we find that,
forn>1,

2a—-1
t T

log A
/-1°g2a—1 t P, (x) exp(—x arg z + 2z7m:6)f(a-) dx
o0
= / P,(z)---dz+ O(e_CI°g2t) = O(e‘°l°g2t).
-0

Hence it follows that, for any fixed integer N > 1,
I <y TN, (8.21)

Theorem 1 now follows from (8.10) and (8.18)—(8.21), since clearly it suffices

to assume that N is an integer. One can generalize Theorem 1 to derivatives
of Mz, f(t).

Theorem 1 shows that Z(t) and Mz ¢(t)/G differ only by O(T~N), for any
fixed N > 1, which is a very small quantity. This certainly supports the belief
that, for this particular subclass of functions f(z), the assertions (7.7)-(7.10)
will be true, but proving it may be very hard. On the other hand, nothing
precludes the possibility that the error term in Theorem 1, although it is quite
small, represents a function possessing many small “spikes” (like ¢t~ sin(¢"V+2),
say). These spikes could introduce many new zeros, thus violating (7.7)-(7.10).
Therefore it remains an open question to investigate the distribution of zeros
of Mz ¢(t) of Theorem 1.

9. Convolution functions and the RH In this section we shall discuss
the possibility to use convolution functions to disprove the RH, of course in
the case should it be false. Let us denote by T the subclass of S? with
a > 1 consisting of functions f(x), which are not identically zero, and for
which ffooo f(z)dz > 0.1t is clear that T? is non-empty. Our choice for G
will be the same one as in (8.1), so that for suitable § we shall have

f(%log(%;)) = f(%) > 1. (9.1)

In fact by continuity (9.1) will hold for |§| < C;, where C; > 0 is a suitable
constant depending only on f, since if f(z) € T2, then we have f(O) =
[ f(z)dz > 0. Moreover, if f(z) € SY, then f(z) € S§ and thus it is of
bounded support, and consequently G < 1/logT must hold if the bound in
(9.1) is to be satisfied. This choice of f(z) turns out to be better suited for our
purposes than the choice made in Section 8, which perhaps would seem more
natural in view of Theorem 1.
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Now observe that if we replace f(z) by fi(z) := f(Dz) for a given D > 0,
then obviously f;(x) € S2, and moreover uniformly for ¢ > 0 we have

£?(z) = Df9(Dz) < (BD)? exp(—aD"/*|z]"/*). (9-2)
In other words the constant B in (6.3) or (6.4} is replaced by BD. Take now

D = /B, where 1 > 0 is an arbitrary, but fixed number, and write f for Df;.
If the RH holds, then from (4.5), (6.4), (6.5), and (9.2) we have, for k given by

(7.11),
(k) n k B logt
Mz;(t) < (G) eXp(loglogt) (9:3)

with a suitable constant B; > 0.

We shall assume now that the RH holds and that (7.7), (7.10) hold for
some f(z) € T2 (for which (9.3) holds, which is implied by the RH), and
we shall obtain a contradiction. This is similar to the method of [22], so we
shall be brief. Take U := T/2+¢ 5o that we may apply (7.9) or (7.10), and let
V=TY4/1ogT, L = log!/2*¢ T. We shall consider the mean value of [ Mz ¢(t)|
over [T —U,T + U] in order to show that, on the average, |Mz ¢(t)| is not too
small. We have first

T+U
/T Mg de > GUL, (9.4)

We have assumed that (7.10) holds, but this implies that (7.9) holds also.
Namely it holds unconditionally with S(¢) in place of Sp(t). Thus for any
fixed integer m > 1 we have
T+U 5
/ (Sm(t+H) — Sp(t — H)) ™™ dt
T
T+H+U o T+U om
< / (Sam(ty — S()™ dt + / (SE+H)-St-H)) " dt
T+H T

T-H+U om
+/ (S(t) — Sm(t))™" dt < U(loglog T)™,
T-H

where T < U < T, % < a £ 1. Let D be the subset of [T'— U, T + U} where
|Sp(t + H) — Spe(t — HY| < log*?T (9.5)
fails. The bound (7.9) implies that

m(D) <« Ulog™ T (9.6)
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for any fixed C > 0. If we take C' = 10 in (9.6) and use the Cauchy-Schwarz
inequality for integrals we shall have

T+U 1/2
/ |Mz ¢ ()| dt < (m(D))Y/? ( / M3 () dt) < QUlog™*T. (9.7)
D T-U
Therefore (9.4} and (9.7) yield
GUL '« / |Mz f(t)| dt, (9.8)
D/

where D' = [T — U,T 4+ U] \ D, hence in (9.8) integration is over t for which
(9.5) holds. If ¢ is in D’ and <y denotes the zeros of Mz ¢(t), then from (7.6)
and (7.11) we obtain

logk =logH —logm + logz(%) + O((log T)*~1/2) (9.9)

for any given € > 0, where log, t = log(log,_;t). To bound Mz ((t) we use
(7.5), with & given by (9.9), 7 = 7(¢, k), (9.3) and

k! = exp(klogk — k + O(log k)).

We obtain, denoting by B; positive absolute constants,

QUL™! <</ t———Z—f—(l
D’

fv— tI<H

Bslog T)

dt <e p( log, T

H T T
X exp(— log(—)(log% + log2(2—7;) —logH +logm — log2(2 )+ 1))

/1: I v-tlat (9.10)

ly—~t|<H
It was in evaluating klog k that we needed (9.9), since the bound (7.8) would

not suffice. If the product under the last integral is bounded by (7.12), we
obtain from (9.10)

_ H T n
1 — — . —
GUL '« Uexp( - log(27r) (log

5 +B4)),

and thus for T > T

H T
1< exp(? log(%) : (logg + Bs)). (9.11)
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Now we choose e.g. 7 = 62, § = min(Cy, e 255), where C; is the constant
for which (9.1) holds if |§| < C}, so that (9.11) gives

1< exp(—B;fH log(%)),

which is a contradiction for ' > T;. Thus we have proved the following

Theorem 2 If (7.7) and (7.10) hold for suitable f(x) € TO with G given by
(8.1), then the Riemann hypothesis is false.

Theorem 2 is similar to the result proved also in [22]. Perhaps it should be
mentioned that (7.10) is not the only condition which would lead to the disproof
of the RH. It would be enough to assume, under the RH, that one had (7.7)-
(7.9) for a suitable f(z), or

Nu(t) = N@t) + 0((10—;0&%) (9.18)

for t € [T — U,T + U] with a suitable U(= T*/2*¢, but smaller values are
possible), to derive a contradiction. The main drawback of this approach is the
necessity to impose conditions like (7.7)—(7.9) which can be, for all we know,
equally difficult to settle as the assertions which we originally set out to prove
(or disprove). For this reason our results can only be conditional.
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Mean Values of Dirichlet Series via Laplace Transforms

MATTI JUTILA

1. Introduction Given a continuous function g of at most exponential
growth on the real interval [0, 00) with the Laplace transform

L(p) = /000 g(t)e P dt,

its integral function may be written as the following Laplace inversion integral:

T 1 .
—— —1.pT
/0 g(t)dt 5 /(a)L(p)p e?* dp. (1.1)

Here the notation means that the integral is taken over the line Re p = a, and
a is a sufficiently large constant. While apparently resembling Perron’s formula
for discrete mean values, the device (1.1) nevertheless fails to enjoy the same
status as a standard tool. But in principle both formulae are of comparable
scope, and we wish to illustrate and popularize the Laplace transform approach
to mean values by concrete applications to Dirichlet series.

True, Laplace transforms are by no means any novelty in analytic number
theory. For instance, the classical Tauberian theory draws conclusions about
the original function from the behaviour of its Laplace transform on the positive
real axis near the origin. A sample of results of this kind is the following: if g(z)
is a non-negative function such that L(§) ~ =1 for § — 0+, then its integral
function (1.1) is asymptotically ~ T' (see [32], §7.12). However, this argument
fails to give any error term; such a sharpening would require information about
the Laplace transform off the real axis.

The present work is methodically closely related to our recent papers [17],
[18]. The former of these was concerned with weighted mean values of |{(§ +
it)|* with an attempt to find a new approach via Laplace transforms and spec-
tral theory to a very deep theorem of Motohashi [25] from a more general point
of view. In the latter paper, we reproved a celebrated formula of Atkinson (3]
on the mean square of Riemann’s zeta-function, again by use of Laplace trans-
forms, in a new way applicable even to automorphic L-functions. The last
mentioned aspect of generality is actually a typical feature of the method. The
reason is that the argument relies largely on certain properties of functions —
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in the first place functional equations — rather than on their diverse individual
definitions.

More specifically, we are going to deal with functions of three kind, namely
|¢(3 + it)]* and squares of L-functions attached to holomorphic or non-holo-
morphic cusp forms for the full modular group ( good introductions to the
theory of automorphic functions are, e.g., [1], [11], [29]; the last two references
cover also their spectral theory ).

Given a holomorphic cusp form of weight &, represented by its Fourier series

00

Z a(n)e(nz),

n=1

the corresponding L-function is

Z a{n)n™%.

The “critical line” for this series is ¢ = k/2 because its functional equation
relates values at s and k — s lying symmetrically to this line. However, to
stress the analogy with the Riemann zeta-function, it is convenient to introduce
the “normalized” coefficients @(n) = a(n)n~(*~1/2, for then the Riemannian
critical line o = 1/2 will play the same role even for the series

oo

F(s)=Y_a(nn".

n=1

Turning to analogous L-series for non-holomorphic cusp forms, let u(z) =
u(z + yi) be such a form with the Fourier series

o0
u(z) =y Y pln)Kis(2minly)e(na).
n=-—00

nF#0
By definition, u(2) is an eigenfunction of the hyperbolic Laplacian for a certain
eigenvalue A > 1/4, and kK = /A —1/4 > 0. Also, it is customary to assume
that u(z+yi) is either even or odd as a function of z, and accordingly the parity
symbol w is defined to be either 1 or —1. Another standard assumption is that
our cusp forms (holomorphic or not) are eigenfunctions of all Hecke operators.
Then the coefficients a(n), normalized by a(1) = 1, and t(n) = p(n)/p(1) (for
n > 1) will be real as Hecke eigenvalues. We now define the L-function related
to the cusp form u(z) as the series

H(s) = Z t(n)yn=°.
n=1
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Our main topic will be the mean square of (%(s), F(s), and H(s) over a
segment of the critical line. The similarity of these functions goes back to the
similarity of their functional equations, which read as follows:

¢2(s) = 2%~ 1n26=Dr%(1 - 5)(1 — cos(ws))C3(1 — s), (1.2)
2s-1 L1 —s+(k—1)/2)
I'(s+(k-1)/2)
H(s) = 2% 172D (1 — s + ik)[(1 — s — iK)
% (w cosh(wk) — cos(ws)YH (1 — s); (1.4)

F(s) = (-1)*/?(2n)

F(1-s), (1.3)

in particular, the function ¢?(s) behaves heuristically like a function H(s) re-
lated to the (admittedly non-existing) eigenvalue 1/4. The first two relations
are standard results, and for (1.4) see, e.g., [23] or [29], Lemma. 3.4.

To emphasize the analogy between our functions ¢2(s), F(s), and H(s),
we are going to adopt the common symbol ¢(s) for all of them, and their
coefficients d(n), a(n), and t(n) will be denoted by c(n). Consider now the
mean value equation (1.1) for |¢(2 + it)|2. With the purpose of analyzing the
Laplace inversion integral on the right, we proceed through the following steps
of the argument:

(1) An arithmetical formula is established for the Laplace transform of
l(3 +it)|? (Lemma 1 in §2).

(2) Evaluating the inversion integral approximately by use of the theorem
of residues, we end up with an arithmetic formula for the mean value
in question (Theorem 1 in §3). This expression is related to the “gen-
eralized additive divisor problem” concerning the summatory function
of ¢(n)e(n + f), where f is the “shift”. At this stage, some smoothing
must be made with respect to T in (1.1) in order to accelerate the con-
vergence of the integral on the right. Therefore the mean value will be
equipped with a smooth weight function.

(3) The error term for the arithmetic formula mentioned above is translated
into the language of the spectral theory (Theorem 2 in §5).

(4) Mean value results (Theorem 3 and its corollary in §7) are deduced from
the preceding formula by appealing to known facts from the spectral
theory.

Our main goal in this paper is to put the fundamental work of Motohashi [25] on
the fourth moment of the zeta-function into a more general context, admittedly
at the cost of losing the remarkable accuracy of his main theorem as a price to
be paid for the generality and relative simplicity of our argument. However, we
try to avoid being too wasteful, for an attempt is made to keep error terms small
enough (that is, well below the “barrier” v/T) to give a basis for recovering the
main results in the important joint work of Ivi¢ and Motohashi (see [9], [10],



172 M. Jutila

or [7]) to be briefly surveyed below. As we pointed out above, an approach
to Motohashi’s theory along these lines was outlined already in {17], but the
present version is more precise and detailed.

The asymptotic formula for the mean square of |go(% +it)|? is of the general

type
T
I o(T) = / lo(3 +it)|> dt = TP,(log T) + Ez,,(T), (1.5)
0
where P, is a polynomial (of degree 4 if ¢(s) = (%(s), and of degree 1 other-

wise). In the zeta-function case, the error term FEj ,(T) is usually written as
E»(T). The main results of Ivi¢ and Motohashi on Ex(T) are:

Ey(T) < T*?1og® T, (1.6)

/ "B dt < T 1og® T, (.7
0

Ex(T) = Q:(VT); (1.8)

see [9] for (1.6) and (1.8) (the latter in the form Q(+/T)), and [10] for (1.7);
the assertion (1.8) in its full force is due to Motohashi [28]. Another proof of
the latter result was recently given by Ivi¢ [8] by use of a spectral theoretic
formula for the Laplace transform of E5(t). The estimate (1.6), in a slightly
weaker form, was first established by Zavorotnyi [34].

Our principal result is Theorem 2 in §5, giving a spectral theoretic formula
for a weighted variant of the error term E3 ,(T'), and this can be used as a basis
for new proofs of (1.6)-(1.8). In addition, (1.6) and (1.7) hold for E2 p(T) as
well, and even for E; y(T), at least if the factor log® T is weakened to T¢. The
analogue of (1.8) for cusp form L-functions is still an open problem; Motohashi
[27] reduces this question {in the case of holomorphic cusp forms) to a certain
highly plausible non-vanishing conjecture.

The Q-estimate (1.8) may be deduced from our considerations in two ways.
The easier way (see [20]) is to derive the above mentioned formula of Ivié {§]
for the Laplace transform of E(t) from the Laplace transform of |{(3 + it)|*
in Lemma 1. Alternatively, following Motohashi [28], we may consider the
function

/1 lo(3 +it)| %t ~¢ dt. (1.9)

Since the error terms in Theorem 2 are O(T'?/5+¢), this function can be analyt-
ically continued to a meromorphic function in the half-plane ¢ > 2/5 having a
pole at £ = 1, the other possible poles being situated among the points % Lik;
and p/2, where &; is the k-parameter for the jth Maass wave form, and p runs
over the complex zeros of the zeta-function. Then (1.8) may be deduced as
in [28] by use of a lemma of Landau and Motohashi’s non-vanishing theorem
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(124}, Theorem 3); the latter guarantees that at least one of the points § =+ ix;
is really a pole of the function (1.9) for ¢(s) = ¢2(s). If the same property
would be shared by the Hecke L-functions, then (1.8) could be generalized to
E3 ,(T) = Q4 (VT). However, this remains still an open problem because an
appropriate analogue of Motohashi’s non-vanishing theorem is not available.

Notation Generally C stands for a positive numerical constant, and ¢ for a
small fixed positive number; the meaning of these symbols is not necessarily
the same at each occurrence. Also, we write A < B to mean that A « B < A4,
and A ~ B to mean that B < A < 2B. The constants implied by the notations
O(---) etc. are either absolute, or may depend on parameters involved; in
particular, since the cusp forms related to the series F'(s) and H(s) will be fixed,
some constants may depend on k or k. Otherwise the notation is standard, as
to for instance Bessel or hypergeometric functions, or it will be explained in
the text.

2. Laplace transforms To get started with our unified approach to the
mean values I ,(T') in (1.5), we need appropriately uniform expressions for the
Laplace transforms of the functions |¢(3 +it)|? to be averaged. In the classical
case of [¢ (% + it)|4, two formulae for its Laplace transform are available: one,
due to Titchmarsh [31], involving the ordinary divisor function d(n), and the
other, due to Atkinson [2], involving the divisor function d4(n). As in [17], we
prefer to choose the former alternative. The argument of Titchmarsh can be
immediately extended to cusp form L-functions.
Let ¢(s) be any one of the functions ¢?(s), F(s), or H(s), and define

() = QLM /( P (0<a<) 2.1)

for Re z > 0. Then, moving the integration to the line Re s = 2, we see by
Mellin’s formula and the theorem of residues that ¢(z) equals

> d(n)e™"* — (y - log 2) /2, (2:2)
n=1
> d(n)e ™, (2.3)
n=1
> t(n)e ™, (2.4)
n=1

as the case may be; here v denotes Euler’s constant. The argument of Titch-
marsh then proceeds as follows: by (2.1), the Mellin transform of the function
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p(ize=®) with 0 < § < 7/2 is @(s)['(s)e~"/2-9)s 5o Parseval’s formula for
Mellin transforms gives

o0
- / I + it)p(h + it) Pelm=29% gt
u -0
Rl . 0 . -
=/ |¢(ime_’6)|2dx=/ d(ize™ ) p(—ize®) dz.
0 0

This may be analytically continued to the strip 0 < Re § < w/2. Putting p in
place of 26, we find that the Laplace transform of the function

e‘rrt )
Feoi PG+ it)[> (2.5)
equals
o
/ P(ize™P/?)p(~ize™®?) da, (2.6)
0

up to a certain function representing the contribution of the negative values
of t. This “correction” function is holomorphic even in the strip |Re p| < «.
Another similar correction function arises if the factor in front of |p(3 + it)|2
in (2.5) is omitted. In this way, we end up with a formula for the Laplace
transform of |o(4 + it)|? . In the next lemma, its expression is simplified to
a more explicit form suitable for applications. Recall that ¢(n) stands for the
coefficients of ¢(s).

Lemma 1 The Laplace transform of the function |<p(% +4t)|? is, for 0 <
Rep <,

L(p) =27 /000 ¢(27ria:e_ip/2)¢(—27rixei”/2) dz + A(p), (2.7)

where the function A(p) is holomorphic even in the strip |Re p| < m, and it is
bounded in the strip |Re p| < 8 for any fited 8 < w. Also, forO<Rep <8 <7,
Im p| <« 1, we have

[o o]

Lp)=2i Y c(m)c(n)Lmn () + Lo(p), (2.8)
m,n=1
where ( /2 o/
e(—me™ /% 4 ne®
Lm,n(p) = __me_.ip/z +nei1’/2 ’ (29)
and

Lo(p) < log*(1 + (Re p)~1). (2.10)
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Proof The formula (2.7) and the properties of the function A(p) follow from
(2.6) and the above discussion. It remains to analyze the integral on the right.
The key result here is an approximate functional equation connecting ¢(1/2)
and ¢(4n2z) for Re z > 0. A relation like this is given in [32], eq. (7.16.2), for
©(s) = ¢%(s). We need a generalized and refined version of this formula, where
the error term is kept explicit. Following Titchmarsh, write the equation (2.1)
for ¢(1/z), change the variable s to 1 — s, and apply the functional equation
0(s) = x(8)¢(1 — 5). Then, changing 1 — a back to a, we obtain
z

o(1/z) = /( )1"(1 - s)x;l(s)<p(s)z"3 ds. (2.11)

2mi

By the functional equations (1.2)—(1.4) and Stirling’s formula, it is easy to
verify that for § = 1 we have in any fixed vertical strip

(1 —s)(2n)%s-1

= —62 -|— n 8 S s 2.12
F(s)x¢(s) 14 ( ) ( )

where (¢ +1)7Y, ifsgnt=§6

y 1sgnt =0,
2.13
oo (8) < { 1, otherwise. ( )

Recall that by Stirling’s formula
logT'(s) = %log27r + (o —3)logt
i vilio-HE - -1

2t+z((cr 2)2 +tlogt t)-I—O(t ) (2.14)

if o is bounded and t — oo. Moreover, (2.13) may be sharpened to 7, s(s) <
e~ in the case @(s) = ¢%(s) for sgn t = §. Let now 6§ be the sign of Im z.
Then, applying (2.12) and (2.1), we may rewrite (2.11) as follows:

#(1/2) = —2mibz¢(4m’z) — iz/ N5,6(8)(8)p(s)(4n22) % ds.
(a)
In particular, for z = §(27)~lize~%%®/2 with variable & > 0, this gives
¢ 2\ - ze~ 8292 size5P/?) + (z) (2.15)
Size—%ip/2 ] T Pe,01%)s )

where

po,5(x) = 57% /( )nq,,a(s)r(s)go(s)(zw)-s (me-m/?)l'sxl-sds. (2.16)
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Returning now to (2.7), we calculate by use of (2.15)

1 ) ) oo o 2r dz
ize— P\ d(—2miretP/2 = —
/0 ¢(2mize YP(—2mize'® ) dx /1 ¢ (_z’meip/2> ¢ (ize—ipﬂ) 2

oo o0
=/ ¢(—27ria:eip/2)¢(27ria:e‘i”/z)d:v+/ {x‘1ei"/2¢(—27ri:cei”/2)p%1(x)
1 1

+ o le/2g(2mize™ " )p,, - (x) +x~2p¢,_1<x>p¢,l<x>} dz.

The leading integral may be combined with the tail of the integral in (2.7) to
give the main term

o
47r/ d(2mize P/ ) p(—2mize’?’?) dx (2.17)
1

for L(p). In the remaining three integrals, we substitute p, s(z) from (2.16)
and the factors ¢(---) from (2.1), choosing a = 1/2 + min(1/4, Re p) in both
cases. Then the z-integration may be performed under the respective double
complex integrals, and the s-integrals may be estimated by use of (2.16) and
the standard mean value estimate

T
/ lo(a +it)|?dt « Tlog® T,
0

where C = 4 for ¢(s) = ¢*(s), and C = 1 in the cusp form cases. The
first mentioned bigger value of C is compensated by the exponential decay
of 7,,5(s) mentioned above. Then, if p is restricted as assumed in the latter
part of the lemma, the estimate (2.10) may be verified by straightforward
estimations of the three terms under consideration. Finally, the integral (2.17)
gives immediately the double series in (2.8) in the cusp form cases. In the
zeta-function case, there are still certain cross terms to be taken into account.
However, these may be readily absorbed into the function Lg(p).

3. An arithmetic formula for the mean value The mean value I ,(T)
defined in (1.5) may be written by (1.1) (with p replaced by 2p for convenience)
as the complex integral

1 _
Bo(T) = 5z [ Lopp™ T dp (31)
a

where a > 0 and L(2p) is given in Lemma 1. We choose a = 1/T. Wanting to
truncate this integral to a very short interval lying symmetrically to the real
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axis, we accelerate its convergence by a smoothing device with respect to T
To this end, let

T2/5+£ S A S T2/3, (32)
and define
1 AlogT (/A2
L (T, A =————/ L, (T+71)e "7 dr. 3.3
2,<p( ) \/7_rA AlogT 2,<p( ) ( )

The following theorem is analogous to a lemma of Heath-Brown ([6], Lemma
3) and to Lemma 2 in [17], with three main differences: the result is not
restricted to the zeta-function, the integral is taken over the whole interval

[0,T] instead of a segment [T}, T3], and finally the parameter A is allowed to
take values smaller than /7.

Theorem 1 Under the assumption (3.2) on A, we have for large values of T
Lo(T,A)=2 Y An)n (T -2mn)
n<T/2m
+4 Y dm)eln+ Hinm+ )2 (log (1+ f/n) ™"
2n+f<T/=
fz1
x sin (T'log (1 + f/n)) exp (—1A%log? (1 + f/n))

+0(A1og® T), (3.4)

where C is a numerical constant.

Proof First we combine (3.1) and (3.3) using the familiar formula

(oo}
/ eAr=B* gy = \/(ﬂ/B)eAz/‘iB (Re B> 0)
-0
to get
1
Lo(T,8) = 57?/< L™ T dp+0(),
a

Write here p = a + ui. Obviously the integral may be truncated to the interval
|u| < U, where

UxAllogT. (3.5)

The contribution of the term Lo(2p) from Lemma 1 to this integral is < log* T'.
Therefore, by this lemma, we have

1 o] a+U1i 1 2pT+p? A2
L(T,A) == > c(m)e(n) D 'L n(2p)e dp
‘n’m,n=1 a-Ui

+ O(log* T). (3.6)
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Clearly, the sums over m and n may be truncated to finite sums over m,n <
TlogT, for the double series converges exponentially.

For symmetry, we combine in (3.6) the contributions of the pairs (m,n) and
(n,m) if m # n. Thus, writing

1 'I‘+‘iU
']m,n("') = '2"‘/ Mm,n(p) dp (37)
T Jr—iU
with .
M n(p) = p—‘l (Lmn(2p) + Ln,m(2p)) e?PT+r 4 > (3.8)
we have
Lo(T,A)= Y c(m)c(n)Jmn(a) + O(log* T). (3.9)
mnLTlogT

We are going to evaluate the integrals J,, ,,(a) by the theorem of residues on
completing the segment of integration to a rectangular contour. To see how to
do this, let us consider the integrand in the rectangle |[Re p| < A~1, |Im p| < U.
Then, with f = m — n, we have

e(—me™ P + ne®)ePTHP* A% _ oxp [ 2p(m(m +n) - T)

+ mifp? + p?A% + O((m + n)|p|3)], (3.10)

-me™P 4+ ne'? = — f 4+ (m+n)ip
+O(fllp*) + O((m + n) pl?). (3.11)

In general, the expression (3.10) becomes smaller if |Re p| increases so that the
sign of Re p coincides with that of 7(m + n) — T. Therefore it is reasonable
to complete the path in J,, ,(a) leftwards for m +n < T'/m and rightwards for
m+n > T/w. More precisely, we move the integration to the line Re p = —A~!
if m +n < T/x, and to the line Re p = A~! if m +n > T/7, unless

|m+n—-T/n| <P, |f]>A2 (3.12)
with
P = (T/A)log?T, (3.13)

in which case the integration is taken to the imaginary axis.
The relevant singularities of the function M,, ,,(p) defined by (3.8) and (2.9)
are the poles +1ilog(n/m) on the imaginary axis. These are simple for m # n,
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while for m = n they coincide to give a double pole at p = 0. The poles lie
inside the contour if

m+n <T/x, %|log(m/n)| <U. (3.14)

The residue of M,, n(p) at p = 0 is 2(in)~}(T — 27n). Further, for m # n,
the sum of the residues of M, ,(p) at its poles is

_ 2isin(T log(m/n)) exp(—(1/4) A% log*(m/n))
vmnlog(m/n) '

Now the explicit terms in (3.4) arise from the above mentioned residues for all
pairs (m,n) with m 4+ n < T/, thus the second condition in (3.14) is ignored.
However, the contribution of the extra terms in (3.4) is clearly negligible.

Consider next the integrals over the horizontal sides lying on the lines
Im p = £U. To keep the poles %ilog(n /m) away from the path, we choose U
so that the points +U7 lie half-way between two neighbouring poles. It is now
easily seen, by (3.10), that the integrand is very small on the horizontal sides.

It remains to deal with the integrals Jp, »(r) with r = A~ or r = 0 as
specified above. The latter possibility may occur only for A < T1/2, which is
thus a more delicate case than A > T2, Once the former case is discussed,
the latter can be settled by similar but more straightforward arguments. Let
us therefore suppose in the sequel that

T2/5+6 < A < T1/2'

By (3.10), (3.11), (3.13), and our restriction for A, the integrals J,,, »(r) are
very small for |m +n — T/n| > P, and also for |m +n — T/x| > Alog? T if
r = £A~! and |f| < AZ. Therefore we may suppose henceforth that m + n
lies, in any case, in the critical interval |m + n — T/n| < P, and that even
|m +n—T/m| < Alog?T for |f| < A2

To begin with our analysis of the integrals Jp, »(r), we simplify these by use
of (3.10)—(3.11). A little calculation shows that

1 r+Ut
Tunt) = 2 [ exp(=2p(n(m -+ ) = T) +220%)

y fsin(rfp?) + (m + n)pcos(mfp?)
p(f? + (m + n)2p?)
+O(min(|f|*TA™3, A7?) log* T) (3.15)

dp

for r = £A~! and the corresponding pairs (m,n); note that the modulus of
the expression (3.11) is > T/A for f < (T/A)log T, and it is < | f| othewise.
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Also,

2 (v 2p2
Jmn(0) = W/ sin( fu?) sin(2u(m(m +n) — T))e ™ 2 v~ du
0
+O(|f|'TA 3 1og* T)) (3.16)

in the case (3.12); now even the term (m + n)ip in (3.11) was treated as an
error term.

At this stage, we need information about the size of the coefficients ¢(n), at
least in mean. An ideal estimate would be |¢(n)] < d(n), which holds for ¢(n) =
a(n) by Deligne’s theorem, but for ¢(n) this is so far only a conjecture. However,
the following unconditional estimate of the Rankin type is well-known:

S pm)P <y +a¥tt (1<y<a), (3.17)
w<nZaty

and the same holds for ¢(n) in general if y is replaced by ylog? . This is crude
for y < 2%/, but then we may use the estimate (see [23] or [5])

> tn) < 5. (3.18)

n<z

Consider now the contribution of the error terms in (3.15) and (3.16) to
I, (T, A) for all pairs (m,n) such that |m +n — T'/n| < P. Those pairs with
m and n of the same parity are of the form (N+h, N—h), where |2N-T/n| < P.
The contribution of this set of pairs to (3.9) is

<log'TY " Y min(h7'T/A% A7%)|e(N + h)e(N — h)|
N 0<hgT

<« (T/A3)(Plog® T + T%5+¢) log® T

by Cauchy’s inequality (applied to the sum over N) and the above mentioned
generalized variant of (3.17). This is <« A by (3.13) and our assuption A >
T2/5+¢ The pairs with m and n of different parity may be treated similarly.
Next we deal with the integrals (3.15) for [m+n—T/x| < Alog? T, | f| < A2
These are of the order
A2 4+ TA?

f2+(TA-H)2
Then, for ¢(n) = d(n) or a(n), the resulting contribution to I ,(T,A) is «

AlogT. In the case c(n) = t(n), the argument must be modified a bit; the
sum over m for given n is first treated by partial summation and (3.18) to get

<
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some saving, after which the sum over n is estimated by Cauchy’s inequality
and (3.17). The result is < (T?/5 + TYSAY2)Te <« A.

It remains to estimate the contribution of the integrals (3.16) for the pairs
(m, n) satisfying (3.12). This amounts to integrals

/oU ‘ ZC(m)c(n)wl(m + n)wa(f) !

x sin(m fu?)e(£(m + n)u) ule WA gy (3.19)

with f = m — n, where the weight functions w; and ws correspond to the
conditions in (3.12); for instance, w; is the characteristic function of the interval
[T/m— P,T/x+ P]. However, we may average over the parameter P in (3.13) to
make w; a smooth function with ng )(x) <« P77 for j = 1,2, and analogously
for wo. Then, by partial summation, we may reduce the double sum in (3.19)
to separate “standard” exponential sums involving coefficients c(n). The latter
sums can be estimated by the following lemma.

Lemma 2 Letx>2,0<y<z,and0<a<1l. Then

Z e(n)e(na) < % log x + E{min(a~?,y) + ya} log z,
r-y<n<z

where E =1 if ¢(n) = d(n), and E =0 if c(n) = a(n) or t(n).

For the divisor function, this is an easy corollary of a transformation formula
of Wilton [33] for exponential sums (for a different proof and generalization,
see [13]). For the coeflicients t(n), this follows immediately from Theorem 8.1
in {11], and the case of holomorphic cusp forms is a well-known classical result.

Consider the case ¢(n) = d(n) in (3.19); the others are easier because E =0
in Lemma 2. Let us sum first over m by Lemma 2 and partial summation.
Then the coefficient of d(n) in the double sum will be e(+nu) times a function
of n and u of the order

< |n = T/2x|"  min(1, Tu?)(vT + min(P,u"?)) log T.

Moreover, differentiating this function with respect to n we see that it is station-
ary as n runs over an interval of length at most P. Therefore partial summation
is applicable even to the n-sum, decomposed into segments of length about P,
and the integrand in (3.19) is seen to be

< P~ min(1, Tu?)(VT + min(P,u™"))*(log? Tyu~le~*"4",

The integrals of this over the ranges (0,P~1], (P~1,T-Y2], and (T~'/2,U]
are each < Alog?T. Thus the proof of Theorem 1 is complete in the case
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A < T2 and as we pointed out above, the remaining case A > T2 is
analogous but easier.

Remark As a preparation for an analytic treatment of the non-diagonal sum in
(3.4), it is helpful to equip it with a smooth weight function. For this purpose,
let v(x) be a smooth function which equals 1 for x < 1 — A/T, and vanishes
for £ > 14+ A/T. The weight function v((2n+ f)(T/n)~!) then makes the sum
smoother. Using (3.18) or estimates by absolute values as above to estimate
the approximation error, we find that (3.4) remains valid with the same error
term even with the weights inserted. Moreover, the f-sum may be truncated
to the interval 1, fo] with fo = (T/A)log T. Thus

Lo(T,A) =So(T)+ > S;(T,A)+0(Alog®T)

1<f<fo
=So(T) + S(T, A) + O(Alog® T), (3.20)

say, where

So(Ty=2 > Amn YT - 2mn), (3.21)

n<T/2n

and -

SHT,A) =) c(n)e(n+ HWy(n/f) (3.22)

n=1

with

Wi () =4f v((r f/T)(2z + 1)) (z(x + 1)) ""/? (log(1 + 1/z)) "
x sin (T'log(1 + 1/z)) exp (—1A%log?(1 + 1/2)) . (3.23)

4. The main term for I3 ,(T) It is natural to try to single out a main term
for I ,(T) from the formula (3.20) for its smoothed version I ,(T, A) defined
in (3.3). In any case, the leading sum So(T) is no problem, for its main term
and error term, say Soo(T) and So;(T'), are by standard arguments equal to

Soo(T) = 4m Res (CO(S 4;(123?’{)2#)3"'1 ,0) (4.1)
and
_ o Co(s + 1)(T/2m)s+? s (= a
So1(T) = 24 “ SG11) ds (-1/2<a<0), (4.2)
where -
Co(s) = Z Anyn~°. (4.3)

n=1
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For ¢(n) = d(n), this function is (*(s)/¢(2s), and otherwise it is the Rankin
zeta-function related to the respective cusp form. In the former case, the residue
(4.1) comes from a pole of fifth order, and in the latter case from a double pole.
Therefore the term Spo(T} is of a suitable form to be included into the main
term in (1.5), or even to be this main term itself in the cusp form cases, for
then the sum S(T, A) in (3.20) is not likely to contribute any additional smooth
function to the main term.

The case ¢(n) = d(n) is of different nature since d(n) is positive, so the only
cancellation in the non-diagonal sums S;(T,A) is due to the trigonometric
factor. However, this factor is a slowly oscillating function of n if f is small,
and the corresponding sum cannot be viewed as a genuine error term. Thus
a contribution from the non-diagonal part should be included into the main
term; this observation goes back to Atkinson [2].

To single out a main term from a non-diagonal sum for a given shift f, we
use an asymptotic formula in the additive divisor problem concerning the sum

D(N;f)= Y _d(n)dn+f) (f=1).

n<N

Suppose that a smooth function Do(NV; f) is an appropriate main term for
D(N; f). Then partial summation shows that a natural main term (if there is
any) for a general sum of the type

o0
> dm)d(n+ /)W (n/f), (4.4)
n=1
with W(z) of compact support in (0, c0), is given by the integral
[ weinansn =1 [ wonsne @)
In particular, the main term for the off-diagonal sum S(T, A) in (3.20) is
> 1 [ Wio)Diis s, (46)
1<f<fo

The next question now is: how to define the main term Dg(N; f) in the
additive divisor problem ? The classical and well-known answer to this problem
is that a certain function of the type

Di(N; f) = NQy(log N), (47)

where Q; is a quadratic polynomial depending on f (see [6], Theorem 2), may
be chosen to play the role of Dy(N; f). However, this main term makes sense
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only if f is sufficiently small compared with N. The following more “uniform”
main term has been given by Motohashi [26]:

Dy(N; f) = (6/77) /0 " ma(z; f) da, (4.8)
where
ma(z; f) = o(f) log zlog(z + 1)
+{otn@r-2£@) -1+ 21 togtate + 1)

+a<f){ (2250 —logf>2 4 (%>'(2)}

T o' (f)(2y - 2%(2) ~log f) + 40"(f) (4.9)

with o) (f) = Zdlfdlog" d. Now D1(N; f) is close to Da(n; f), in a certain
sense to be made more precise below, if f is small, but this connection breaks
down if f approaches N, or even exceeds it. On the other hand, the function
Dy(N; f) serves as a main term in the very wide range 1 < f < N1%/7-¢ The
construction of this function is based on the Kuznetsov—Motohashi identity (see
[26], Theorem 3).

A third approach to the additive divisor problem, and indeed a very natural
one at least in principle, is via the generating Dirichlet series

> " d(n)d(n + f)n~* (4.10)
n=1

and Perron’s formula. This argument has been worked out by Tahtadjan and
Vinogradov [30] (see also [14], [15]). The function (4.10) itself is not easily
tractable, but there is a certain meromorphic function (}(s) (more about this in
the next section), defined in terms of non-holomorphic Eisenstein and Poincaré
series, which approximates the function (4.10) relatively well and may be ex-
pressed explicitly in terms of the spectral resolution of the hyperbolic Laplacian.
In particular, if the function (4.10) is analytically continued to a meromorphic
function with the aid of (7(s), then both functions have a triple pole at s = 1
with the same principal part of the Laurent expansion. Therefore, by Perron’s
formula, the function

D3(N; f) = Res ((F(s)N°s™1,1),

may be expected to give the main term for D(N; f), in other words it is another
candidate for the function Do(N; f), and this was shown in {30]. Now, because
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D;3(N; f) is functionally of the same type as D;(N; f) in (4.7), these functions
must be identical, because there cannot be two different main terms of such a
simple form.

It is interesting to analyze the connection between Dy(N; f) and Ds(N; f).
The latter function may be made explicit by the theory in [30], and a rather
tedious calculation shows that

N/f
Ds(N; f) = (6/n%) /0 ma(z; f) de,

where the function mg(z; f) is defined like mo(z; f) in (4.9), except that z + 1
is replaced by x at the two places where it occurs. Thus, in practice, log(z +1)
is replaced by logxz, which does not make a big difference if x is large, or if
the range [0, N/f] for z is long. However, the situation is quite different if f
approaches N.
Now, depending on the choice of the function Dy, there are the two possi-
bilities
6/7%) Y / Wi (z)mi(z; f)dz (i =2,3) (4.11)

1<f<fo

for the main term (4.6} of the sum S(T, A). Since

ma(z/f; f) — ma(x/f; f) < o(f)log (1 + f/x) (|log(z/f)| +log f + 1),

and this difference is a smooth function, it is easy to see that the ambiguity
of the main term in question is <« T, which may be neglected. Thus, when
calculating the main term by the formula (4.6), we may apply the simpler
function Dy (z; f) (equal to D3(z; f)) as a substitute for Dy(z; f) in spite of its
weaker accuracy compared with Dy(z; f). Then the analysis of the main term
amounts to that carried out by Heath-Brown [6]. To get rid of the parameter
A, we may specify it to be a suitable function of T', say A = T?/5+¢,

5. Spectral formulae for error terms Having extracted a smooth main
term from the expression (3.20) for I3 ,(T,A), we now turn to its finer oscil-
latory behaviour. The diagonal part So(T') is controlled by the function Cy(s)
defined in (4.3), so our main concern will be the off-diagonal part S(T, A).

Aiming at a unified discussion of the sum S(T, A), we appeal to the Dirichlet
series method for the sake of its universality, though the case c¢(n) = d(n) could
be dealt with by the Kuznetsov—Motohashi identity [26] as well. As the main
tool, we are going to apply the Dirichlet series

Cs(s) = Z e(n)e(n + f) ( ) (n+£)"° (6>1), (5.1)

n=1
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where @ = (k — 1)/2 in the case of the holomorphic cusp forms, and & = 0
otherwise. This series is analogous to (4.10); the present slightly different
definition is adopted in order to admit natural interpretations in terms of inner
products of certain automorphic functions [15]. To motivate the choice of & in
the case c(n) = @(n), note that then

oo

Cr(s—k+1) =Z (n)a(n+ filn+ f)~°

By the Mellin inversion formula and (3.20), we have

S/(T, A) = % /( CrOMy(5)ds (a>), (5.2)
where o
My(s) = f° /0 Wy () (1+1/2)* (@ + 1)~ de (5.3)

is the Mellin transform of the function Wy ((x — f)/f){(z/(x — f))* with the
convention that W(z) = 0 for z < 0.

An important property of the function Cy(s) is its analytic continuability to
a meromorphic function, holomorphic in the half-plane o > 1/2 up to a triple
pole at s = 1 in the case ¢(s) = ¢2(s). Supposing the last mentioned property
for a moment, we move the integration in (5.2) to a line with 1/2 < a < 1,
and the possible main term for S¢(T, A) is given by the residue at s = 1; this
is another interpretation for the same main term discussed in the preceding
section. Then, to summarize the decomposition of I ,(T, A) into a main term
and an error term, we rewrite the previous decomposition (3.20) as follows:

Lyo(T,8) = So(T)+ Y Res (Cp(s)Ms(s),1) + E24(T,8),  (5.4)
1<f<fo

where the error term is given by
E2o(T,A)

=So1(T Z o /Cf(SMf Yds (1/2<a<11) (5.5)
1<f<fo i

with Sp1(T) as in (4.2). Our main goal in this section is expressing Es ,(T, A)
in a spectral theoretic form (see Theorem 2 below).

The argument now goes on as follows: the function Cy(s) in (5.4)-(5.5) is
replaced by a certain more easily tractable function C}(s) without affecting the
residue in (5.4), the new integral involving C}(s) in (5.5) is evaluated, and the



Mean Values of Dirichlet Series via Laplace Transforms 187

approximation error is finally estimated. As a preparation of technical nature
for this procedure, we need an approximate formula for the Mellin transform
M¢(s). We ignore for a moment the smoothing function v in (3.23), but its
effect will be commented afterwards.

Lemma 3 Let a and b; (1 < 1 < 4) be constants with 0 < by < by < 1,
0 <b3 <by <1, T bealarge number, 1 K X <« T, T" <« A <« T, and
s = o + it with o bounded, t > 0, and T% K t < T%. Then

X
/0 2%(z +1)° sin (Tlog (1 + 1/2)) (log (1 + 1/))~*
x exp (—1A%log? (1 + 1/1)) dx

= V/m/2e(—5)(L +t/T)T(1L+T/t)*
% t—a,—3/2—a(T + t)a+1/2Ta+1/2

x (log (1 +t/T)) ™ exp (—1A2log? (1 + t/T))
+0 (X3+“+”(¢ZX T — X)L exp (—%A2/X2))

+0 (t_7/2_“_”T2+“+” exp (—%A2t2/T2)) ; (5.6)

the leading term and the second error term are to be omitted if t < T/X.

Proof It is more convenient to work with the variable y = 1/z. Then, the
saddle point y = yo for our integral is the zero of the function

_ Ty-t

thus yo = t/T, which lies in the interval [X~!,00) if t > T'/X. The saddle point
method (in the form of {3], Lemma 1, for instance) gives the main term in (5.6).
The integral over y may be restricted to a finite interval, say [X !, b] for a small
positive constant b. The functions F, i, and ® occurring in Atkinson’s saddle
point lemma may be chosen as follows:

Fly)=Ty+t, wy) =cy, @)=y * " 3exp(—1A%y?),

where ¢ is a small positive constant. Then the error terms of the lemma give
those in (5.6). It is a minor complication that the condition (0 <)¢/'(y) >
F(y)y~? of the lemma is not satisfied in the whole interval of integration.
However, this does hold when 1 (y) is small, say for y € [yo/2, 2yo], and other-
wise the lower bound |¢(y)| > F(y)y~! may be used to play the same réle in
the proof of the saddle point result.
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Corollary Let My(s) be defined by (5.3), where o is a constant, o is bounded,
and Wy(z) is as in (3.23). Then, putting T = |t| + 1, we have

Mj(s) < fo7lr Y2709 exp(— 1 (At/T)?)

o7 Af/T)? 5.7
+mexp(—( FIT)%), (5.7)

where the first term may be omitted if f > 7/(27).

Proof If the smoothing factor v(---) in (3.23) is ignored for a moment, and
the lemma is applied with X close to T/(27 f), then the assertion follows imme-
diately from (5.6), even without the factor T¢ in the second term, if || > T*.
The same result then plainly follows even if the function v is taken into account.
Finally, to deal with the case t < T, note that integration by parts gives, in
any case, the bound < 72T exp(—(Af/T)?), which completes the proof of
(5.7).

Remark Suppose that the integral (5.6) is smoothed, for instance by taking
a weighted average with respect to the parameter X over a certain interval
[X — Xo, X + Xo]. If the saddle point T/t (now in terms of the variable ) does
not lie in this interval, then a saving by a power T4 for any fixed A > 0 may
be obtained in the first error term in (5.6) if

eX > Xo>» X3|T -tX|"'T*® (5.8)

for some small positive constant ¢. To verify this, one may apply a smoothed
variant of Atkinson’s saddle point lemma ([12], Theorem 2.2) in the proof of
Lemma 3.

Specified to the Mellin transform My (s), where we now have 1 < f < fy =
(T/A)1ogT, X < T/f,and Xo < A/f (the latter follows from our construction
of the smoothing function v in (3.23)), the condition (5.8) means that M;(s)
is very small for |t| 3> T'*¢/A. Also, the condition in the end of the lemma
means that the main term may occur only for f < |t|. These observations imply
truncation conditions for the range of the integration in (5.2) and for the range
of summation over f for given s, as far as the most significant contributions
are concerned.

After this digression, we introduce the functions C}(s) following [15]. Let
E(z, s) be the non-holomorphic Eisenstein series, P¢(z, s) the non-holomorphic
Poincaré series, in the standard notation, and with £(s) = 7=%/2I'(s/2)¢(s),
define E*(z,s) = £(2s)E(z, s) and E*(2) = E*(z,1/2). Then the function

G6) = T Pz B )P, (59)
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where (-, ) denotes the Petersson inner product, is our approximation C; (s)
to the the function Cy(s) in the case ¢(n) = d(n). Further, in the cases of
holomorphic or nonholomorphic cusp forms, say A(z) and u(z), the respective
function C3(s) is

: (4m)°

I'(s)

47°T(s) 2

POPTE(s/DT (52 + im)T(s/2 i) 1 & ) [ (5:11)
As a matter of fact, the function (5.10) is identical with the corresponding
function Cy(s).

An important property of these functions, allowing their analytic continua-
tion to meromorphic functions and giving a starting point for the calculation
of the respective integrals (5.2) with C(s) replaced by C}(s), is their repre-
sentability in terms of the spectrum of the hyperbolic Laplacian. Let u;(z)
be the jth Maass wave form, attached to the eigenvalue 1/4 + ﬁ?, and write
zj = 1/2+1ikj, pj = p;(1). Let H;(s) be the L-series H(s) (in the notation of
the introduction) related to the form u;, and denote its coefficients by t;(n).
Then (see [14], Lemma 2}, for o > 1/2, we have

1/2—s 9
CH(s) = Zs(s) + 43];4—(8/2) 21 o1t (/) HZ (3)IT(23/2)|*T (s — 2;)T(s — 2;)
j=

= (Pr(z,8),4*A(2) ), (5.10)

w22 1% oa(f)IE(G +1)|*T(s — 3 +au)l(s — 3 —iu)
TG ) FRI0(3 + ) PI¢(L + 2iu)|?
where Z;(s) isa meromorphlc function defined in terms of the gamma-function
which has a triple pole at s = 1. The latter function is responsible for the
main term Do(N; f) in the additive divisor problem, and the residue of the
function Zs(s)My(s) at s = 1 gives the main term for the sum S;(T,A). The
contribution of Z(s) to the error terms in these two problems is negligible.
To formulate the corresponding formulae in the cusp form cases, write

c(t) = (E(z, 5 +it), y¥lA)P), &) = (B(z, 5 +it, [u(2)[?),
cj = (u;, y*1A(2))?), & = (uj, [u(2)]?).
The functions C}(s) for holomorphic and nonholomorphic cusp forms now read

as follows (see [15], Theorem 1; as to (5.13) below, note that because of different
scaling, the variable s in [15] is to be replaced by s + k — 1):

)k 1/2-s =)
2I‘((:)P)(sf+ k—1) { Zciﬂ_jtj(f)r(s ~ z;)T(s — ;)

c(W)o2i(fIT(s — L +iw)T(s — L —iu)
2\/—/ ﬂf)zu]_"(_ —iu)¢(1 - 2“1’) du} (5.13)

du, (5.12)
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and
87l'f1/2‘3 oo o
[p(1)|245T2(s/2)T'(s/2 + ir)I'(s/2 — ik) { gc 3P5t S(AT(s — z)[(s — Z5)

&(u)oai(f)T(s — 3 +u)l(s — § — iu)
2\/_/ (nf)*T(3 ~ (- 2w) d“}' (5.14)

In the above formulae, the series and integral represent the contribution of
the discrete and continuous spectrum of the hyperbolic Laplacian, respectively.
The functions C}(s) are holomorphic in the half-plane o > 1/2, up to the
possible pole at s = 1, and the points z;, Z; are simple poles on the line
o = 1/2. The integrals are holomorphic on this line, and their poles in the
half-plane o > 0 are situated at the zeros of {(2s). To see this, the integrals
should be analytically continued over the half-line. For this purpose, note that
each one of these integrals is a holomorphic function in the strip 0 < o < 1/2,
and if a suitable meromorphic function having poles at the zeros of {(2s) is
added to it, the boundary values of the new function on the half-line coincide
with those of the integral understood as a function in the half-plane o > 1/2.
In this way, a meromorphic continuation of the integral to the half-plane ¢ > 0
is established, and the same procedure may be repeated step by step to extend
the meromorphic continuation to the whole plane.

In concrete applications, we have to cope with various spectral averages, for
which purpose we quote a couple of inequalities. A prototype of a spectral mean
value estimate is Iwaniec’s spectral large sieve: putting a; = |p;|2/ cosh(mk;),
we have

2

K<k;<K+Kop

2
> ant;(n)

n<N

< (KKo+ N)log®(KN) > |an*  (5.15)
n<N

for 1 € Ky < K and any complex numbers a,, (for a simple proof, see [19] or
[29], Theorem 3.3). An important application of this is the mean value estimate

> HI(3) < K?logC K; (5.16)
K<r;<2K

for a proof, represent H ]2(%) first by its approximate functional equation. An-
other proof, independent of the spectral large sieve, has been given by Moto-
hashi [24].

For the inner products occurring in (5.13) and (5.14), we have

Z |e;|? exp(mr;) +/ |c(u)|? exp(r|ul) du < K, (5.17)
ki <K
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K
Z |&;]? exp(mk;) +/ |&(u)|? exp(T]u|) du < K=, (5.18)
5 <K ~-K

The former result is due to Good [4], and we proved the latter result recently
in [15], [16] by a method applicable in both cases.
Returning to the integral S¢(T, A) in (5.2), its spectral part is given by

SH(T, A) = % | CiM9ds  (2<a<n. (1)

Here the contributions of the discrete and continuous spectra are formally anal-
ogous but the latter is less significant, so the former deserves more attention.
The corresponding part of the above integral may be reduced to integrals of
the type

1 (s — z;)T'(s — %) sds (x
Tm'/(a) FT2(s/2)T(s/2 T iR (s/2 —im) > 0¢ (FER) - (5.20)

1 F(S — Zj)F(S — 7]') s
271 Jgy D(s)T(s +k —1) X" ds (5.21)

if M(s) is substituted from (5.3) and the order of the integrations is inverted.

To begin with our analysis of the integrals S7(T), let us briefly comment the
case of the holomorphic cusp forms, which appears to be the easiest one. The
integral (5.21) is of the Mellin-Barnes type and its value is

T(3 + ik;)T(—2ik;)
F(k - % - il‘&j)

2 ‘
p cosh(mk;) X1/? Re{X_“‘j
xF(§+mj,%—k+m,~;1+2mj;1/X)}, (5.22)

as one may verify by a calculation similar to that in [21}, sec. 3.6. The con-
tribution of the continuous spectrum may can be treated analogously, after
which the integration over s is done, and the remaining integral over £ may
be evaluated approximately by the saddle point method. The sum over f pro-
duces something like a factor H j(%) to the discrete part of the formula, and a
zeta-factor to its continuous part. The result of this procedure then appears to
be of the same flavour as an identity due to Motohashi [27] for a local weighted
mean square of a Hecke L-function for a holomorphic cusp form.

The remaining cases concerning the zeta-function and the Hecke L- series for
a nonholomorphic cusp form may be treated simultaneously with the integral
(5.20) serving as the common starting point; the case k = 0 is related to the
zeta-function, and otherwise k will retain its previous meaning in terms of the
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eigenvalue corresponding to the cusp form. This integral is not as easy as (5.21)
to write down explicitly, so we shall be content with approximate formulae. The
approximation Cy(s) =~ C7(s) entails additional error terms. All these will be

manageable essentially within the limit of a similar error term as in Theorem
1.

For a neater formulation of the spectral version of Theorem 1 (and to stress
the analogy with the main theorem of [25]), we write

O¢(xk,m;T,A)
_ /0 " U f /T2 + 1))z~Y2(z + 1)~ sin (T log (1 + 1/2))

x (log (1 +1/2)) "  A(z; K, ) exp (1A% log? (1 + 1/x)) dz,  (5.23)

A(z;k,7) = Re {(gg + % + 5(33))—1‘7»

_cosh(2mk)\ (3 + ir + 2i6)[(5 + ir — 2iK)
X (1 te sinh(7r) ) ; e(r,m)I'(1 -|2- 2ir) } (5.24)
with ) .
and

L33 +ir) +i)T(3(3 +1ir) — ik)
T2(3(3 +1r)) '
Analogously, define ©4(r; T, A) as in (5.23) but with A(---) replaced by

e(k,7) =

Awin) = Re { (o + 4+ 8(@) ™ (L +1/2)°

i F(% +1r)
g (Sinh(m‘)) (k- § — ir)T(1 + 2ir) } (5.26)

Note that §(z) = O(1/x) as x — oo. Also, trivially e(0,7) = 1, and otherwise,
for fixed x, Stirling’s formula (2.14) gives e(x,7) =1+ O(r~!) as r — co. An-
other useful observation is that ©¢(x,r;T,A) and O4(r;T,A) decay rapidly
as r exceeds T'/A. The reason is that these quantities are much similar to
M¢(Z;), so the assertion follows from the remark after the corollary to Lemma
3. Therefore the spectral series (and likewise the integrals) in the following
theorem may be truncated. In that theorem, we are going to use the nota-
tion Sp1(T"), defined in (4.2), to stand for the error term of Sp(T') with the
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understanding that the corresponding function Cy(s) is clear from the context.
Recall that fo = (T/A)logT.

Theorem 2 Let Ez ,(T,A) be defined by (5.5). Then, for T?5tc < A <
T2/3, we have

Ex(T,A) = Sor(T) +22%H2 DD t(HF?04(0,555T, A)

j=1 1<f<fo

2 /°° ¢G5 + i) T 12
+ — _— 02y e O, U, T, A)du
T J_oo [C(1 + 2iu)|? 1 2l f)f 1 )

+0(A10g° T), (5.27)

Es p(T, A) = Spa(T)
+2(4m) > eimr Y ti(HFTV204(kys T, A)

F=1 1<f<fo
4h=1/2 k- 1/2/ c(u)
+ 7T — u)((1 — 27u)
X > oan(H)f V05w T, A) du+ O(Alog® T), (5.28)
1<f<fo

and

Eou(T,A) = So1(T)

167 é
IP(1)|2 Z cosh MJJlI}IJ‘(zg/ 2)|* 1<;fo BT Os i T )
/ Eu)T(5 + iu)
1)|2\/_ m|(g + §)4C(1 - 2iu)
x Y oa(H)F YO (k,u; T, A) du+ O(Alog® T).  (5.29)

1<f<fo

Proof The proofs of these formulae are closely analogous, so it suffices to
consider (5.29) in more detail as an example. We decompose the formula (5.5)
in the present case as follows:

E2’H(T, A) = So1(T) + S*(T,A) + S™(T, A), (5.30)

where
ST, A) = > SHT,A), (5.31)
1<f<fo
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with S3(T, A) as in (5.19), and

S*(T,A) = K;f 2im /(a)(c,(s) —Ci(s))Ms(s)ds  (a>1). (5.32)

The explicit terms in (5.29) will arise from S*(T, A), while $**(T, A) will give
only error terms.

The sum S*(T,A): The function C}(s) was defined in (5.14), where our main
concern will be the discrete part. Recall that the integral in (5.19) may be
truncated to |t| < T'*/A. The contribution of the jth term in (5.14) to
S*(T, A) will be calculated in different ways depending on the size of x; relative
to the number

Ko = TY/5+¢, (5.33)

Let first k; < Ko, and move the integration in (5.19) to the line 0 = —=1/2+
€ passing simple poles at z; and Z;. Then, for given s on the new line of
integration, the integrand is

<e(tB +1) Y |T(s = 2)T(s - 2;)1&;] exp(mr;/2);?
k;<Ko

X

S (O My ().

1<f<fo

We apply this to estimate the integral over [t| < 2Kj.

Let K < Kj, and consider first the local sum over K < x; < K + 1 using
Cauchy’s inequality, the large sieve inequality (5.15), and the estimate (5.7) for
M;(s). It is easy to verify that

Yl Y G M(s)|” < KoM

K<n;<K+1 1<f<fo

split up the f-sum first into parts over 1 < f < K and 2K < f < 2t'K
(v =0,1,...). Next integrate over t, and finally sum over K applying Cauchy’s
inequality and (5.18). The final result is < Kg/ 27-1/2+¢ « T<. The integral
over 2Ky < |t| < T1+¢/A is treated on taking the integration sufficiently far to
the left. The integrals over horizontal lines are estimated as above, and the new
integral is small because the integrand decays exponentially as o decreases.

Consider next the residual terms. Let R be the residue of the integrand in
(5.20) at s =Z;. Then

cosh(m;)e(r, k)R = T'(z; + 2ik)0(z; — 2ik) ( M) X1/2-in;

4T (z;/2)[T (22;) ¥ sinh(mr;)
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which may be verified by use of the formula I'(s)['(1 — s) = «/sin(ns) and
the duplication formula for the gamma-function. We see that the contribution
of the pair of the poles z;, Z; to $*(T, A) is almost identical with the corre-
sponding term in (5.29), the only deviation being that instead of the factor
(x + 1/2 + 8(x))~* in (5.24) (for r = ;) we now have (z + 1)~*. Since
k; < Koy and we may suppose that z > A/logT, the relative error here is
14+ O(KoA~11logT). To clarify the effect of this replacement, let us first esti-
mate a partial sum of the spectral sum in (5.29). Note that ©¢(k,x;;T,A) is
closely related to M(z;), so it may be estimated by Lemma 3, or at least by
the same method. Then by the spectral large sieve and (5.18), we see that the
sum over x; < K in (5.29) is

L TYVHeR1/2, (5.34)

A minor complication here is the dependence of ©(...) on k;, but a version
of the large sieve allowing such a dependence is available [19], and it applies
here to establish the estimate (5.34). Now the difference of the two sums under
consideration is analytically of the same nature as the sum in (5.29), expect
that there is now a diminishing factor < KoA~!logT. This scaling factor
goes through the calculation outlined above (such a comparison device will be
applied again below), so the approximation error to be estimated is at most
the bound (5.34) multiplied by this factor, thus it is < TV/2+<K32A-1, By
(5.33) and (3.2), this is < A.

Next we turn to the terms with x; > Ko. Again we start from the integral
(5.20), but this time it is approximated by the integral (5.21) for k£ = 0, divided
by 8. The value of the latter integral may be read from (5.22). Leaving aside
for a moment the estimation of the approximation error, let us proceed with

the new integral. The hypergeometric function is transformed by the formula
(see [22], eq. (9.6.12))

F(a,b;2b;2) = (%(1 + \/T__z))—2a

1—\/T_——z)2).

Vi (5.35)

xF(a,a—b+%;b+%;<

The new hypergeometric series is rapidly convergent, so we may approximate
it by its leading term 1. Also, the exponent —2a = —3 — 2ix; at the factor in
front of it is simplified to —2ix;; all this can be done with a relative accuracy
1+ O(A~tlogT). Note also that

@+ (30 +ValETD)) =@+i+s@) . (536)
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After this cosmetics, the jth term is as in (5.29) except that in place of A(z; &, r)
we have the factor

(27r2‘)’1 coshz(ﬂr)lF(% + %z’r)\‘1 Re [(:c + % + 6(w))'irr(% + ir)l"(—2ir)].

e

It is easily seen that this coincides with A{x;,r) with a relative accuracy
1+ O(r~1). The same comparison device as above shows that the consequent
error due to the preceding approximations is

< TR 1+ (T/A)V2AY) < A;

recall that the series in (5.29) may be truncated to x; < T1t¢A~L

The effect of the change of the gamma-factors made above is still to be
discussed. Stirling’s formula (in its more accurate form as an asymptotic ex-
pansion) shows that the ratio of the respective integrands is asymptotically
1+a3/s+az/s?+.., which may also be written as 1+b; /(s—1)+bg/(s—1)s+..,
where the coefficients depend on k. Thus the difference of the integrals can be
written in terms of integrals of the type (5.21) for k = 0, 1,...; and the values of
the latter integrals are given in (5.22). Thus, after all, the argument goes back
to similar integrals as above, for bi%ger values for k however, which decreases

their order at least by a factor x; . As we saw already, such a diminishing

factor turns main terms into error terms.

So far we have worked out the discrete part of the formula (5.29). The
correponding part of (5.27) emerges similarly; we have now x« = 0, and the
estimate (5.16) plays the same role as (5.18) above. Further, the contribution
of the continuous spectrum may be reduced to integrals of the type (5.20)-
(5.21), with 1/2 + 4u in place of z;, so the integrals in (5.27) and (5.29) drop
out by analogy. The proof of (5.28) is similar but simpler because we are
now working with the integral (5.21) which is explicitly given by (5.22). This
completes our analysis of the term S$*(T, A) in (5.30) and its analogues.

The sum S**(T,A): We quote from [15], Lemma 6 and [21], Lemma 1, a
formula for C}(s) indicating its similarity with Cy(s): for o > 1, we have

o

C(s) = D t(m)tin+ ) (L+ £/n)*2 (n+ £)7*(1 + gu(sim, f))

n=1

f-1
+ 570 YU — bl ), (5:37)
n=1



Mean Values of Dirichlet Series via Laplace Transforms 197

where
7T23-2sl-\(s)
gn(S n, f) |F(2 +2I€)I2F2(8/2) (S/2+in)[‘(3/2_iﬂ)
" ZL’” (b)r(g+§ +iR)D(E+ 5 —iR)I(s — & = 5 +iK)

xD(s—¢—3%—ix rlgi_—% (W+g/mf-1)de  (539)

with —1/2 < b < min{s ~ 1/2,0), and

98-, /a3 (s)
T(s + 3)%(s/2)['(s/2 + ik)['(s/2 — ir)

X /0 (1+a(u)™°F <s, s+ % i—_,_%) cos(ku)du  (5.39)

he(sin, f) =

with

a(u) = f~1/f2 + 2n(f —n)(coshu — 1).

Since g.(---) in (5.37) appers to be usually a small “perturbation” term of
order < n~! for given f and s, the first approximation of the difference cy(s) —
c}(s) involves series in (n + f )~¢~1. Hence this difference can be expressed in
terms of series converging absolutely in the half-plane o > 0. Note that the
integral in (5.38) converges rapidly, so that it may be truncated to the segment
|Im £| < log®T. Then, for |t| 3> T*¢, the order of the whole gamma-expression
in (5.38) is < |t|~° uniformly for the relevant values of ¢ bounded away from
the poles of the integrand.

We now show, for @ > 1, that

oo

> | My(s) (Z t(n)t(n + ) (1 + £/n)" gu(sin, f)(n + f>-3> ds

1<f<fo Y (@) n=1
< (T/B)?T, (5.40)
and that
Z / M;(s) (f Zt(n — n}he(s;n, f)) ds < T*. (5.41)
1<f<fo

For a proof of (5.40), we choose b = —1/2 + ¢ in (5.38) and take the s-
integration to the line ¢ = 2¢. The integral over |t] < T* is easily estimated
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by (5.7) and Stirling’s formula. Next we write the last factor of the integrand
in (5.38) as

¢ 4 FNY . ef ,
(1+f/n)—1~<1—n—> R GIN N CY

and split up g.(s;n, f) into two parts, and likewise also for the integral (5.40)
(over |t] > T*).
Consider first the contribution of r(&;n, f). Note that

FY et L
rieim ) < (el +1) (725 ) for Lo < s

otherwise r(&; n, f) does not make sense as a “remainder term”, and it is then
estimated trivially from (5.42).

We take the s-integration further left to the line ¢ = —1 + 2¢; the integrals
over the horizontal segments t = £7%, —1 + 2¢ < ¢ < 2¢ may be estimated by
use of (5.7) and Stirling’s formula as above. Next we move the ¢-integration to
the line b = 1/2 noting that the integrand is regular at £ = 0. Now, by (5.7)
and the above remark on gamma-factors, we get a contribution < T1t*A~2 to
(5.40); this is smaller than the bound in (5.40).

To estimate the contribution of the first term on the right of (5.42) to (5.40),
we keep the s-integration on the line o = 2¢, but take the £-integration to the
line b = 1 — ¢. Henceforth the argument is as above, and the contribution is
< (T/A)/?T=. This completes the proof of (5.40).

Turning to the proof of (5.41), we first move the integration to a = ¢,
and note that the integral over |t| < T¢ gives <« T¢. Next we transform the
hypergeometric series in (5.39) by the formula

F(a,b;c;z) = (1-2)"°F (a,c - b; ¢ z_i1> , (5.43)

valid for |arg(l — z)| < w and ¢ # 0,—1,... (see [22], eq. (9.5.1)). The new
hypergeometric series F(3, ;5 + 3; (a(u) — 1)/(2a(u))) is rapidly convergent,

and its leading term gives rise to the integral

% /00(1 + a(u))/? % o) V2 cos(ku) du.
0

If |t| >> T, the present integrand, like those arising from the other terms of
the hypergeometric series, is rapidly oscillating in a range where usinhu >
t~1f2(n(f — n))~'T¢. Therefore, by a familiar principle in the theory of ex-
ponential integrals, this part of the integral (equipped with a smooth weight
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function) is very small and may be omitted. The truncated version of h,(s; n, f)
is now substituted into (5.41), and the integration is moved sufliciently far to
the left. In virtue of (5.7), the new integral will be small, and the integrals over
the respective horizontal segments on the lines ¢t = £T° are easy to estimate
to complete the proof (5.41).

In view of (5.40) and (5.41), we now have, by (5.32) and (5.37),

S*(T,A) = O(A)

IR ) St + ) (1= (14 £/ (a4 1) ds

1<f<fo n=1

Since M (s), by definition, is the Mellin transform of Wy ((z— f)/f), this means
that

S@A) = XXttt + Wi/ ) (1 1+ £/m)%) + O,

1<f<fon=1

The significant terms here are those with n > Af/logT; otherwise W(n/f)
is very small. Therefore the first approximation to this sum is

"% Y. Y _tm)t(n+ Hn T Wi(n/f). (5.44)

1<f<fo mn=1

An analytic treatment of this amounts to using Dirichlet series with the
argument s + 1 instead of s. Compared with the earlier situation, the terms
in the new sum are now smaller by a factor about A~! at least. The spectral
contribution to the original sum was < T/2%+¢(T/A)Y/2 by (5.34), if estimated
simply by absolute values, and it is therefore evident that the corresponding
contribution to the sum (5.44) may be estimated by this bound divided by A;
this gives « T*+¢A~3/2 &« A. Thus the sum (5.44), though explicit, is small
enough to be treated as an error term.

Now, all in all, we have shown that $**(T,A) <« A, and together with our
previous discussion of the sum S*(7T, A), this completes the proof of (5.29).

The proof of (5.27) is analogous to the above except that in the formula
(5.37) for C%(s) there is the additional term (see {15], eq. (4.2) and [14], Lemma

1)
VTd(£)2272T%(s)
FeT4(s/2)T(s +1/2)°
Its contribution to S**(T,A) is « T'**A~2 « A, as one may verify on mov-
ing the integration in the corresponding integral to the line ¢ = —1 + £ and

estimating My(s) again by (5.7).
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6. Comparison with Motohashi’s formulae It is interesting to compare
the formula (5.27) with the fundamental formula of Motohashi [25] for the local
weighted fourth moment

1 [ 2
A—x/Tr/_oo IC(3 +4(T +t))|%e~ /) gt (6.1)

Likewise, (5.28) corresponds to the main theorem in [27].
In Motohashi’s formula for the above mean value, the contribution of the
discrete spectrum consists of the sum

iajH?(%)@(nj;T, A), (6.2)
j=1
where
o(r;T,A) = /oo(x(a: +1))" Y2 cos(T log(1 + 1/x))
0
x Az, 7)exp (—1A%log?(1 + 1/2)) dz (6.3)
with

. ) T2(1 +ir)
_ -1/2—-ir . 2
Az,r) = Re [x (1 + sinh(n’r)) (1 + 2ir)

x F(3 +ir, 2 +ir;1 + 24r; —1/m)]. (6.4)

An apparent analogy is visible between (6.3)—(6.4) on one hand, and (5.23)—
(5.24) on the other hand, the latter for x = 0. (We follow here the notation of
[25], and the present A(---) should not be confused with our earlier notation.)
To make the correspondence more precise, we transform here the hypergeo-
metric function by the formula (5.35). Approximating the new hypergeometric

series by its leading term 1, we may analyze the dependence of A(z,r) on z as
follows:

sTTF(} +ir, § +ins L+ 2ir—1/2) m o (14 \/m))-l_m
e (30 VEFDD) =@+ ) (3 VAl T)

=(z+ % + 6(z)) ",

the last step by (5.36).
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If the equation (6.1) is integrated with respect to T, then the result is essen-
tially I ,,(T, A) for ¢(s) = ¢%(s). On the other hand, integration of (6.2) leads
essentially to the corresponding spectral sum in (5.27). To see this, note that
the relevant range for f in the formulae of Theorem 2 is [1, x;/2n] because then
the integral O(: - -) has a saddle point ( if the weight function v is temporarily
viewed as the characteristic function of the unit interval for simplicity), and

that
2 Y (NP H(R) (6.5)

F<ni/2m

by the approximate functional equation for H;(s).

In Motohashi’s formula, there is also a contribution from holomorphic cusp
forms, but nothing like that is seen in our theorem 2. The explanation is that
this ingredient, which is small in practice, is hidden somewhere in the error
term.

Turning to (5.28), we compare it with the formula of Motohashi [27] for
the mean value of the type (6.1) for |F(3 + it)|?. In that formula, there is a
main term and contributions from the discrete and continuous spectrum, but
none from the holomorphic cusp forms. Let us restrict ourselves again to the
contribution of the discrete spectrum, which reads as follows:

(4m)* > " eip7H,(3)0(k55 T, A), (6.6)
i=1
where
o(r;T,A) = / g™*/ 212 (g 4 1)%/27 cos (T'log (1 + 1/x))
0
x exp (~1A?log? (1 + 1/z)) A(z, r)dz,

i ) I(3 +ir)
sinh(nr) /) T'(k — 1 — ir)T'(1 + 24r)

A{z,r) =Re [x“" (
xF(k—%+ir,%+ir;1+2ir;—1/x)].

On the other hand, the precise form of (5.28), given by the argument of its
proof if no approximations are made, should involve the factor

(z+1)""F(3+ir,3 —k+ir;1+2ir;1/(z + 1))
in place of (z + % + 6(x)) . Now, by (5.43), this factor equals

(1+1/2) 22 "F (k-1 +ir, 1 +ir; 1 4 2ir; —1/2)
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whence an integrated version of (6.6) amounts to the explicit part of (5.28), up
to the approximation (6.5).

7. The mean square of the error term  As an application of Theorem 2,
we extend the mean square estimate (1.7) for E5(T) to the more general error
term Ej ,(T). Since the function E3 ,(T') can decrease only relatively slowly,
the occurrence of a large value V of |E; ,(T")| implies that this function must
be large in an interval of length > V/ logC T after or before T (depending on
the sign E ,(T')); here C (1 or 4) is the degree of the polynomial P, in (1.5).
This argument, in combination with the next theorem, yields a generalization
of (1.6) to be formulated as a corollary below.

Theorem 3 For T > 2, we have
T
/ E} (t)dt < T?**. (7.1)
0

Moreover, for Ex(T) and Ey p(T), the estimate holds in the stronger form
< T?1ogT.

Corollary We have
E2,¢(T) < T2/3+€.

Proof of Theorem 8: Obviously it follows from the definition (3.3) of I ,(T')
that

L,(T—-AlogT,A)+0(1) £ L ,(T) < L o(T + Alog T, A) + O(1)

since I, (T') is increasing. The respective main terms for I (- - -) here differ
at most by amounts <« AlogCT from each other, so for the error terms we
have

E3 (T — AlogT, A) + O(Alog® T)
< E2,<p(T)
< Bz (T + Alog T, A) 4+ O(Alog® T).

Thus for a proof of (7.1) it suffices to show that
o0
/ v(t)E3 ,(t, A) dt < T, (7.2)
0

where A = T'/2 and v(t) is a smooth weight function of support in [T'/2,3T)
such that v(t) > 1 for ¢t ~ T.
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Let us consider the proof of (7.2) for ¢(s) = H{(s) as an example. In the
spectral formula (5.29) for E2 g(T'), the error term is of admissible order by
our choice of A. As to the leading term, we have

T
/ S2,(T)dt < T?*=.
0

This may be verified by using the formula (4.2) for So1(T) and a mean square
estimate for the function Cy(s) on the critical line (see [15], egs. (3.5) and
(38.7)).

We are now left with the spectral terms in (5.29). The contributions of
the discrete and continuous spectra are analogous, the latter being however
somewhat more straightforward to deal with, for instead of the spectral large
sieve one may appeal to the ordinary one. Therefore we may henceforth focus
our attention to the discrete part.

It is convenient to restrict the summations in (5.29) to “dyadic” intervals:
kj ~ K, f ~ F. By our choice of A, we may suppose that K, F, and the
variable z in (5.23) satisfy

K< TV F<«TY?logT, TY?/logT <z < T/F.  (7.3)

The quantity ©(k, k;;T,A) in (5.29) involves an integral, given in (5.23)-
(5.24), which should be first simplified. For this purpose, the following general
inequality is helpful. Let 6o(r) and 6¢(r) be functions for » ~ K, f ~ F, the
latter continuously differentiable in r, such that

Bo(r) < 6o, 167(r)] +10(r)| < 6. (7.4)

Then we have

3" & exp(rn;/2)a; 00(s;) Y t;(F)F /04 (x;)

lchK fNF
< KY*(K + F)Y26,0T*. (7.5)

Indeed, if k; is first restricted to a short sum [k, k 4 1] for an integer k x< K,
then the dependence of 8¢(x;) on x; may be eliminated (as in [19]) by use of
Sobolev’s inequality familiar from the large sieve method. After that, Cauchy’s
inequality and (5.15) are applied to this short spectral sum, and finally the k-
sum is estimated by Cauchy’s inequality and (5.18).

Now the spectral sum over x; ~ K in (5.29) can be written as the left hand
side of (7.5), where 67(k;) represents the z-integral in (5.23), and 8p(x;) with
8o(k;) < 8o = K/? consists of certain factors depending on ;.



204 M. Jutila
The right hand side of (7.5) is « TY/2* if
9 < TV K-Y(K + F)~'/2 (7.6)
This gives a bound for the accuracy of admissible approximations of the z-
integral mentioned above.
That integral is now simplified as follows: we replace the weight function v by

the characteristic function of the unit interval [0, 1], omit the small correction
function 6(z), and use the approximations

V2 4+ 1) (log (1 +1/2)) ™ = v2(22 + 1)~ Y2 + O(x~%/?),

log(1+1/z) =

-3
77 T 1 +0(z°) (z— ).
These approximations are readily admissible by (7.5) and (7.6). Then, in the
variable y = (nf/T)(2x + 1), the simplified integral becomes

1/2—ik;
LY [y
27Tf 0

x sin(2r f/y) exp(—A%r? f2(Ty) %) dy;  (7.7)

the lower limit of integration should actually be 7 f /T, but this may be replaced
by 0 with a small error.

The exponential integral {(7.7) could be evaluated approximately by the sad-
dle point method. However, because its precise main term is irrelevant for our
present purposes, we prefer to follow a more elementary line of argument: we
are using the “second derivative test” (see [32], Lemma 4.5) in the form of the

identity
b ) c+é ) b G(Il:)
G(z)eF @ dg = / G(z)eF @ dg + = (iF(z)
[ e@ s &9 . iF()

([ L) (Y ow

where F'(c) = 0, and |F"(c)] < r, 6§ < r~'/2, Here it is assumed that a <
c— 6 < ¢+ 6 < b; otherwise the equation should be modified in an obvious way.
If no saddle point exists in the interval [a —§, a+ 6], where & is the typical order
of |F”(x)|~1/2, then (7.8) amounts simply to partial integration, or essentially
to the “first derivative test”.

The saddle point for the integral (7.7) is yo = 27 f/x;, which lies in the unit
interval for f < k;/2m. Let us suppose first the FF <« K. To begin with, we

c—6
+

c+8
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apply partial integration in (7.7) with respect to the first factor in the integrand,
observing that the integrated terms vanish. Then we use the device (7.8), where
the most critical term is the leading integral. We consider its contribution to
(7.7), noting that the other terms lead to analogous calculations. Accordingly,
we substitute y in a neighbourhood of the saddle point as y = 2nf/k; + ¢
with £ « FK~3/2, The integral over ¢ gives a contribution to © sk, k538, A)
in (5.29), which is squared out and integrated over ¢t with the same weight
v(t) as in (7.2). The expression to be integrated involves sums over f,g ~ F,
Kn, kj ~ K, and integrals over §,n « FK —3/2, say. Now the t-integral is very
small by its oscillatory and smoothness properties unless

Kp — K K 7%, (7.9)

in which case it is estimated trivially.
Each of the pairs kp, k; satisfying (7.9) is counted at least once if we first
sum over

(b= 1)T* < kp,y 55 < (p+1)T°

for an integer p < K, and then sum over p. The argument now amounts
essentially to that used in the proof of (7.5) above. After having estimated
these spectral sums, again by use of Cauchy’s inequality, (5.15), and (5.18), we
integrate trivially over £ and 7 to end up with the desired estimate < T%+¢,

In the case F > K (with the implied constant sufficiently large) the argu-
ment is more straightforward because there is no saddle point for the integral
(7.7), and the same estimate as above is obtained. This completes the proof of
(7.2) for o(s) = H(s).

The preceding argument is slightly too wasteful to give (1.7) and its analogue
for Ey p(T') with the logarithmic factor instead of T°. However, because now
(5.15) or (5.17) is applied instead of (5.18), such a sharpening is possible in
principle, and also in practice if the procedure is refined appropriately.
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The Mean Square of the Error Term in a Genelarization
of the Dirichlet Divisor Problem

KAl-YaM LaM and KAI-MAN TSANG*

1. Introduction and main results Let {(s) denote the Riemann zeta-

function and let g,(n) = }_ d*. For y > 0 we define
din

Da(y) =Y ou(n)

n<y

and

£ay) = Daly) ~ ¢(1 — oy - £

where the symbol ¥/ means that the last term in the sum is to be halved if
y is an integer. In these definitions, @ may be any complex number with the
convention that A,(y) is taken as lim A,(y) when ¢ = 0 or —1.

u—a

1
y1+a + 'Q-C(_a’),

In this paper we shall be concerned with an asymptotic formula for the mean
square of Ag(y). In 1996, Meurman [3] proved that, for > 1,

. c1z3/2te 4 O(x) if -1/2<a<0,
/ DNo(y)?dy = { cozlogz + O(x) if a=-1/2, (1.1)
' O(z) if —l<a<-1/2,

where
c1 = ((6 +4a)7%¢(3))71¢(3/2)%¢(3/2 - a){(3/2 + a),
c2 = (24¢(3))71¢(3/2)%. (1.2)

Here and in the sequel, the constants implied in the O-symbols depend only on
a and €, where ¢ is an arbitrarily small positive number whose choice eventually
depends on a. Defining

Fu(z) = / Daly)2dy — crz®/>+e (13)

*Research of the second author was supported in part by NSF Grant DMS 9304580 and
HKU CRCG Grant 335/024/0006.
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for x > 1 and —1/2 < a < 0, we shall prove below the following,.
Theorem For X >2 and -1/2 < a <0 we have

X
/ Fo(z)dr = cX? + O(X2Ho(3+0)/(2+0) g X),
1

where

c=—(2m)"1722(12¢(2 — 2a)) "1 (1 — @)%¢(1 + 2a)['(1 + 2a) sin(ma). (1.4)

Note that the constant ¢ is negative for —1/2 < a < 0. As an immediate
consequence of the theorem, we obtain the following

Corollary For —1/2 < a < 0 we have
F,(z) = Q_(2).

The corollary shows that the upper bound F,(z) = O(z) obtained by Meurman
(cf. (1.1)) is sharp. Of course, we cannot exclude the possibility that, actually,
Fo(z) ~ 2¢cx for —1/2 < a < 0.

It is worthwhile to mention the interesting case a = 0, to which a great deal
of work has been devoted. In this case,

Aly) := Doly) = Do(y) — y(logy + 27y —1) — 1/4,

where 7 is Euler’s constant. The study of A(y) dates back at least to Dirichlet,
who first obtained in 1838 the upper bound A(y) = O(yY/?) by an elemen-
tary argument. Since then, the determination of the best bound for A(y) is
called Dirichlet’s divisor problem. In the context of the statistical aspect of the
problem, Tong [9] obtained, in 1956, the following classical result:

/1'*‘ A(y)*dy = (67°(3))7'¢(3/2)*2%/2 + Fo(x)

with Fo(z) = O(zxlog®z). Preissmann [6] then proved in 1988 the slightly
better upper bound

Fy(z) = O(zlog* z). (1.5)
This improvement, though small, is not insignificant. It remains the best known

upper bound for Fy(z) to date. On the other hand, Lau and Tsang [2] proved
in 1995 that

X
/ Fo(z)dz = —(87%) "1 X2 1og? X + ¢ X%log X + O(X?) (1.6)
2
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for some constant ¢’ and, as an immediate consequence, that
Fy(z) = Q_(zlog® z). (1.7)

The asymptotic formula (1.6) shows that the average order of Fy(z) is = log? z.
The remaining gap between the upper bound (1.5) and the Q_-result (1.7)
seems very difficult to close up. In strong contrast, our result in the present
paper settled completely the problem of the order of F,(z) for —1/2 < a < 0.

For the proof of our theorem, the starting point is a formula for A,(y),
obtained in Lemma 1 of [3]. To deal with the main term of the integral of
F,(z), we follow the idea of Lau-Tsang in [2] and make use of an asymptotic
formula for

> oa(m)oa(m+h) (-1/2<a<0, y>0, h>0).
(See (2.24)—(2.26) below.)

2. Proof of the Theorem From now on we assume always —1/2 < a < 0.
Let X >2, 1 <z < X and set M = X¥/(+9/2), From Lemma 1 of [3], we
have, when 1 < y < z and y is not an integer,
Da(y)® = Daly, 4M)* + 204(y, M)Ra(y, 4M,2X)
+ 2R, (y,4M,2X)Ro(y, M,2X) — Ry (y,4M,2X)?
+O(y™ /42 (|00 (y, 4M)| + |Ra(y, 4M, 2X)) + y=/2*),

where
Aa(yw ) = (ﬂ.\/_)—lyl/4+a/2
/ Z oo (n)n3/4=9/2 cos(4m /my — m/4)du (2.1)
n<uY
and

Ro(y,Y,2) = (2m)" ) 0a(n)

n<Z
2 poo
X / / t~sin(4n (/g — vn)Vt)dtdu. (2-2)
1 JuY
Integrating with respect to y and then using Cauchy’s inequality, we obtain

/lrv Do (y)2dy = I1(z) + 2Ix(z) + O(v/Ia(2) I4(z) + I3(z))

+ 0@ /2 (/I (z) + VI (@) + 2/%Fe),  (2.3)
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where

L(z) = / Doy, 4M)Ydy, In(z) = / Aaly, M)Ra(y, 4M, 2X)dy,
1 1

T T
Iiz) = / Ro(y,4M,2X)%dy, I4(z) = / Ru(y, M, 2X)2%dy. (2.4)
1 1
By Lemma 2 of {3] and Cauchy’s inequality, we get
I3($), I4(.’E)
T
< [((Z oatmmin(1, XMy - ) 2))2dy
1

n<2Xx

T
<</ Z 0o(n)? min(1, XM~ 1(y — n)~2)dy <« X3°M~1V2,  (25)
1 n<2x

For the right-hand side of (2.1), on interchanging the summation and integra-
tion, we get

Aqly, AM) = (m/2)~1yl/4+a/2
X Z Ua(n)n—3/4—a/2w1(n) cos(dm\/ny — m/4),

n<8M
where
1 if 0<t<4M,
wi(t) =< 2—-t/(AM) if 4M <t <8M, (2.6)
0 if t>8M.

Squaring this and then integrating with respect to y, we have
Ii(z) = ((6 + 4a)n?)~ Y%+ — 1)
X Z 0a(n)?n=3/27% (n)? + Sy (z) + Sa(z),

n<8M
where
Si(z) = (471'2)—1 /z y1/2+a Z o.a(m)o.a(n)(mn)—3/4—-a/2
L
x w1 (m)wi (n) cos(dn(vn — vVm)/y)dy (2.7)
and

Sa(z) = (471'2)-1 /z y1/2+a Z o,a(m)o,a(n)(mn)—3/4—-a/2

1 m,n<8M

X wy(m)wy (n) sin(dn(v/n + vV/m)\/7)dy. (2-8)
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In view of (2.6) and equation (1.3.3) in [8], we find that
Z oa(n)Zn—3/2—aw1(n)2

n<8M
=((3)71¢(3/2)%¢(3/2 — a)((3/2 + a) + O(M V272,
Thus,
L(2) = ¢;2%2%% 4 8 (x) + Sa(x) + O(x¥/*reM—1/2-2 1 1), (2.9)
where ¢ is defined in (1.2).

Next we proceed to obtain an upper bound for I1(z). By the second mean
value theorem, there exists £ € [1, z] such that

/:y—lfz ) ---cos(47r(x/——x/?n’)\/z7)dy‘

Sl(.'IJ) < $1+a

mn<8M
m¥#n
& xl+a max Z (\/‘T—Z— \/ﬁ)—le%’i(\/——\/ﬁ)\/ﬂ .
£<y<z mone8M
m#n

By the Montgomery-Vaughan inequality (see [4]), we thus find that

Si(z) < z'te Z oa(n)’n717 < gltepM e,
n<8M

For S3(z), the second mean value theorem and trivial estimate will suffice, and
we get

So(z) < 't Z 0a(m)oq(n)(mn)~1~%? « gte Mo,
m,n<8M

Substituting these estimates for S;(z) and S»(x) into (2.9), we get
Ii(z) « X3/%+e 4 xl+apr—a, (2.10)
Finally, in view of {1.3), (2.5), (2.9), and (2.10), the formula (2.3) reduces to
Fo(z) = S1(z) + S2(z) + 2L(z) + O(X3/2rap~1/2-9),

Integrating with respect to x then yields

b's X X
/1 Fa(a:)d:c=/1 Sl(x)da:+/1 Sa(x)dx

X
+ 2/ IQ(IL‘)dﬁB + O(X5/2+‘1M—1/2—a,).
1
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To complete the proof of the theorem it is sufficient to prove

X
/ Si(x)dx = cX? + O(X¥2te M2 og X), (2.11)
1
X
/ Sy(z)dr « XM™® + X3/%+a (2.12)
1
and
X
/ L(z)ds < X3/, (2.13)
1

Proof of (2.12). Integrating the right-hand side of (2.8) with respect to x
and reversing the order of integrations, we have

[ S2(@z =@r) X520 S ) mm) 4 2 (s o)
1 m,n<8M

1
— v W gin(dr(/n m v)dv.
X/wx(l ) (4r (/7 + V)X d

Applying partial integration twice, we find that the integral on the right-hand
side is < X~3/2-¢(\/n + /m)~' + X~ 1(y/n + /m)~2. Thus,

/x So(z)dr < X Z Oo(m)oe(n)(mn)~1-9/2
1

m,n<8M

+ X532 N7 go(m)oa(n)(mn) 472 « XM 4 X3/,
m,n<8M

as desired.

Proof of (2.13). Let m <2M, n<2X, V >4M and t > 4M. Put

X 1 a
J(mmn,V) = _/1 (X — y)yat? cos(dm\/my — 7/4)

2 poo
X /1 /u , t~1sin(4n(\/y — v/n)Vt)dtdudy, (2.14)

X
Kai(m,n,t) = / (X - gytte
1

x sin(4m(Vt £ vVm)\ /7 — 4nv/nt F 7/4)dy. (2.15)
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By a simple change of variable and then integrating by parts twice, we find
that

Ki(m,n,t)
—92xi+% — it sin(4n v—A4r w/4)dv
2X / N_(l A+ sin(4n(VE + )Ty — dr/ml  7/4)d

=X(1 - X"H©2r(vi+ vm)) ! cos(dr(VE £ vVm) — dmv/nt F 7/4)
+O(X5/4+“/2(\/Z:I:\/_rﬁ)‘2

Consequently,
2 puV

/ / t7 1Ky (m,n, t)dtdu = 27) 71X (1 - X7Y)
4uM

/ / t~ (vt £ v/m) " cos(dn(VE £ vm) — dnv/nt F n/4)dtdu
duM
+ O X5/4+a/2M )

<X / / £ (VE £ V/m) et - VAIVigedy| + X5/4+a/2p -1,
1 J4uM

Note that v/t & \/m > +/t for m < 2M and t > 4M. When n = 1, the double
integral is <« M~1/2. Otherwise, by Lemma 4.3 of [8], the double integral is
< M~Y(y/n—1)"1. Hence, by (2.14) and (2.15), we have
1 2 uV
Jm,m, 4M) — J(m,n,V) = 7 / / =1 (K 4 (m, , 8) + K- (m, n, 1)) dtdu
1 J4uM
< XM~V:min(1, M~YV2 (- 1)71) + XS/ 42,

uniformly in V. However, by Lemma 2 of [3], vlim J{m,n,V) = 0. Therefore,
—00

J(m,n,4M) <« XM~Y2min(1, M~Y2(\/n — 1)71) + X5/4*e/2p1-1, (2.16)
We now use this estimate to bound flx I(z)dz. We have, by (2.1),
A (y; M) (71'\/_) 1,1/4+a/2
X Z o (m)Ym=3/4=%/20y,(m) cos(4m\/my — 7/4), (2.17)

m<2M

where
1 if 0<t<M,

wa(t) =4 2—t/M if M <t<2M, (2.18)
0 if t>2M.



216 K.-Y. Lam and K.-M. Tsang
Thus, in view of (2.2), (2.4), (2.14), and (2.17), we get
X X
[ B@da = [ (X = 9)8a(w M)Raly, 474,20y
1 1

= (2v2r?)~! Z 0o (m)ym=3/4=/ 2y, (m)

m<2M
X Z oa(n)J(m,n,4M).
n<2X
By (2.16) and (2.18), we then have

/ > Lz)dz < Y oo(m)ym=3/42 N 5,(n)|J(m,n,4M)|
1

m<2M n<2X
K XM7V4=2/2 3" 5, (n) min(1, M~2(y/n - 1)7Y)
n<2X
+ X9/4+a/2pr-3/4~a/2
< X3/2,
since M > X. This completes the proof of (2.13).

Proof of (2.11). By (2.7), reversing the order of integrations and making the
change of variable y = Xv?, we have

/ XSl(a:)dx=7r'2X5/2+“ > ga(m)oa(n)(mn) =4 2wy (myw: (n)
1 m<n<8M

X /1 (1 = W2 cos(dn(v/n — vm)VXv)dv. (2.19)
1/vVX

Firstly we replace the lower integration limit of the inner integral by zero. By
an integration by parts, we have

1/vx
/ (1 — 22+ cos(dn(v/n — vVm)WVXv)dv « X322 (/n — vm)~L.
0
Hence, the contribution of this error term to the right-hand side of (2.19) is

<X ) oa(m)oa(n)(mn) ¥4 (/n — m) Tt

m<n<8M
<<XM€{ Y Y (mny g2
n<8M m<n/2

+ Z Z (mn)_%_%n1/2(n—m)"l}

n<8M n/2<m<n

<<XM€{ Z n~i7e 4 Z n’l_“logn} K XM~ote,
n<8M n<8M
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Thus,
X
/ Si(z)dz = m2X%/2e S g4 O(X Mot
1 m<n<8M
= g7 2X%/ e L O(X Mo, (2.20)
say, where

Sm,n = 0a(m)oa(n)(mn) =>4~ 2wy (mywi (n)g(dn (v — Vm)VX)  (2.21)

and, for any € > 0,
1
a(8) = / (1= 2)02+2 cos(8)dy. (2.22)
0

Applying partial integration twice and, otherwise, by trivial estimation, we
have
g(8) < min(1,672). (2.23)

We then split T into the following two sub-sums:

1= Y bt Y b

n<8M m<n/2 n<8M n/2<m<n

By (2.21) and (2.23), the first sub-sum is

<X Z Z Oa(m)og(n)(mn) 3422 (\/n — /m)~2

n<8M m<n/2
< X! Z Oa(n)n~T/470/2 Z oo (mym=3/4"%/2 & X1,
n<8M m<n/2

In the second sub-sum, we write n = m + h with 1 < A < min(8M — m,m).
Then

T = Z Z ¢m,m+h + Z Z ¢m,m+h + O(X_l)'

h<vM  hSm<8M-h VM<h<dM h<m<8M-h
By (2.21) and (2.23), the second sum here is
& Mex—l Z Z m—3/2—a( /m_l_h__ \/E)—Z
VM<h<4M h<m<8M-h

<« Mex—? Z B2 Z m~1/2-a & x-1pr—ate
VM <h<4M h<m<8M—h
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Let
Qn = h2VM.

Then we can further write

T= Z Z ¢m,m+h

h<vM  h<m<min(Q4,8M)

+ > S bmmen+O(XTIMTO).

h<vBM1/4  Qr<m<8M

Similar to the above estimation, we find that the first sum on the right-hand
side is

< X'y R Y ca(m)oa(m+ hym(m(m + h))=3/4=/2
h<vVM h<m<min{Q4,8M)

< X717 b7 (min(Qp, 8M))270 < XTIMYAe,
h<vVM

where an obvious application of Cauchy’s inequality was made to the summands
of the first line. Hence,

T= Z Z ¢m,m+h + O(X_1M1/4_a)'

h<VBMU/4  Qr<m<8M

To evaluate this last sum, we will need an asymptotic formula for

Yr(y) = Z oo(m)oa(m+h), for —1/2<a<0,y>0, h>0 (2.24)
m<y

Fory > 0and h > 0, let
Pi(y) = ao(h)y + a1(h)y'™® + as(h)y't2e, (2.25)
where

ao(h) = ¢(1 — a)2¢(2 - 2a) loga_1(h) < 1,
ar(h) = 2(1 +a) 1 (1 + a)¢(1 — a){(2)to_1(h) < RS,
ag(h) = (1+2a)71¢(1 + a)?¢(2 + 2a) to_1_oq () < hE.

Following closely the proof of Theorem 2 of [1], we can show that

Yr(y) = Pr(y) + En(y)
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with
Ep(y) < y1t9)/2+1/@=2a)+e (2.26)
uniformly for h < y(1+@)/2+1/(3-20)

We remark that Motohashi [5, Theorem 1] has a sharper estimate for the sum
Y m<y d(m)d(m + h) than Theorem 2 of [1]. Following his argument, one can
get a correspondingly better bound for Ej,(y). Nonetheless, the estimate (2.26)
is sufficient for the present purpose of obtaining our main results.

For convenience, let

Oyn =4n(\y+h-VOVX  (y, h>0).

Then by (2.21), (2.24), and partial summation, we have

Z ¢m,m+h

Qr<m<8M

8M

_ /Q wi ()i (y + B)(uy + B)>/4-9/2g(6, ) Pl (y)dy

+ [ @y + Byl +h) 4/ 29(6,4) Baly)
8M

- Eh<y>diy{wl<y>w1<y T B)(wly + B) %4/ 2g(6, 1)}y

h

= Wi(h) + Wa(h) + W3(h),

8M
Qn

say. Accordingly, we decompose T as:

T= Z (Wi (h) + Wa(h) + Wa(h)) + O(X 1M /4=y
h</BM1/4

=T1 4+ Tp + T3 + O(X "1 MY4—), (2.27)

say. As y(1+a)/2+1/(3-2a) > Q;L/z > h for y > Qp, we may apply (2.26) to
bound Ep(y) in Wy(h) and W3(h). Hence from (2.22) we have Wy(h) <«
M1/3-a/2ep=2 -1 50 that

Ty < X~ 1MY/3-a/2e, (2.28)

Next, by partial integration, we have

1
g(8) = —/ (1 — v®) 32 sin(Gv)dv <« 672
0
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for 8 # 0. Hence

d

39 Oun) ATV,

Combining this with (2.23) yields

d -3/4-a
7y @+ B+ k) 3/4=l2g(9, 1)}
L y~Yrepm2x 1 oy 2mapmlx 12
for Qn < y < 8M. Thus, in view of (2.26),
W3 (h)

8M
< / y(1+0)/ 241/ B=20)+e (y=3/2ap=2 X =1 4y ~2=ap-1x=1/2y gy
Q

h

< h—2X—lM——a/2+1/(3—2a)+e + h_IX—1/2,
and so
Ty < X—1M1/3—a/2+e +X_l/2M€. (2'29)
Finally, as Py (y) = ap(h) + O(hcy®), we see that

8M
Ti= ). aofh) / wi(y)w(y + )Yy + k)~ 42g(8, 1) dy
hS\/§M1/4 Qh

+O(X~ 1MV,
Combining this with (2.27), (2.28), and (2.29), we find that

8M
T= 5 aolh) [ wlw+ W+ R (6,0
h<vVBM1/4 @n

+O(X "I MO-9)/2),

Using the integral representation (2.22) for g(6), changing the order of integra-
tions and making the substitution y — y — h/2, we find that

T= /1(1 —)tte Z ap(h)
0

h<VEBM1/4
8M+h/2
) / wiy = h/2wi(y + h/2)(y* - k?[4) 717/
Qn+h/2
x cos(4m(\/y + h/2 — \/y — h/2)VXv)dydv
+O(X~t1MO-2)/2), (2.30)
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Now, for Qp + h/2 <y <8M +h/2 and 0 < v <1, we have

(W? — B2 /47347002 = gm0 (1 + O(R%y %)),

cos(4n(\/y + h/2 — \/y — h/2)VXV)
= cos(2rhv Xy~ Y/21) + O(h*VXy~5/?)
and
wi(y — h/2)wi(y + h/2) = wi(y)® + O(RM ).
Whence

wiy - h/2wi(y + h/2)(y* - h?/4) 74/
x cos(4m(\/y + h/2 — \/y — hJ2)VXV)
= wy(y)%y~3/2® cos(2rhv/ Xy~ /%)
+ O(y_4_ah3\/5(— + y_3/2_“hM‘1),

If we replace the integrand of the inner integral in (2.30) by

w1 (y)zy_a/z_“ cos(2mh+/ X /yv),

the error introduced is

SM+h/2
< Z / (= h3VX + y 32 b MY dy
hS\/§M1/4 Qr+h/2

< M~GFa/2 /X 4 p-lme « M1,

Consequently,

T=/0 (1—v2)?t2e Z ap(h)

h§\/§M1/4

8M+h/2
g /o +h/2 w1 (y)?y =/~ cos(2rhV Xy~ 2v)dydv + O(X 7' M(~/2)
h

8M
= Y a® / wy(y)?y~3/*2g(2rhv/ Xy~ /?)dy
hS\/§M1/4 Qh

+0(X1M1-a/2),
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Then, making the change of variable # = 2rhv/Xy~'/2 and interchanging the
order of summation and integration, we get

B
T =2(27r)—1—2aX—1/2—a/ 02ag(0) Z ao(h)h—l—Qawl(47r2h2X6—2)2d0
A h<8/A
+ O(X_lM(l_a)/2),

where

A=7nVX/V2M and B =2rvVXM V4 (2.31)

To evaluate the sum in the integrand of the last integral, we begin by consid-
ering the summatory function

Ut) =Y ao(h)h™'7%, t>0.

h<t
By an elementary argument, we find that
Ut) = —(2a)71¢(1 — @)%t + (1 — a)*¢(2 — 2a)71¢(1 + 2a)¢(2) + R(t)

with
R(t) = O(t717%9), (2.32)

as t — oo. Moreover,
Jim R(t) = (2a)71¢(1 - a)? ~ ¢(1 — a)%¢(2 — 2a)"1¢(1 + 2a)¢(2).  (2:33)
Then partial summation yields, for 8 > 0,

> ag(h)h™ 2w, (4nh2 X 072)?
h<8/A

6/A
=¢((1-a)? / 71720y (4n%2X072)2dt + [wy (4722 X607 2)2R(2))5/4
1

=/, R(t)%{w1(47r2t2X0‘2)2}dt
=J1+ Jo + Js,
say. By (2.6), (2.31), and (2.32) we find that
8/A

Js = 4w’ XM~1972 / t(2 — T2 X M~1972)R(t)dt
8/(v24)

& (M/X)—1/2~a9—-1—2a,
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and, by (2.31) and (2.33),

Jy = —R(1-)w; (4n2X072)?
= (¢(2 = 2a)71¢(L + 2a)¢(2) — (20)71)¢(1 ~ a)®wi (472X 072)2,

Moreover, by direct computation,

8/(vV2A)
Ji=¢(1 - a)z/ t~172aqy
1

6/A
+¢(1—a)? / tT17% (2 — PP X MT107%) dt
6/(v24)

=72 (M/X)™% + (20)7*¢(1 — a)?,
where A is a constant depending only on a. Thus,

T = 2(2m) 71 72¢(1 ~ 0)%¢(2 ~ 20)71¢(1 + 20)((2) X /270 Ly
+ O(x—1/2M—aIL1| + X—1/2—a|L2| + M—1/2—aL4)
+O(X1M1-a)/2y

where

B B
L= / g(6)dd, L;= / 62%(1 — w1 (472X 672)2)g(6)db,
A A

B B
Ly = / 02w, (412 X072)%g(6)ds, Ly = / 6~1|g(6)|d6.
A A
We now evaluate the above four integrals L;(1 < j < 4). Since
0 oo prl
/ g(8)dd = lim / / (1 — )22 cos(6v)dvdd
0 t—0+Jo Jo
1
= lim t/ (1 -3+ + %) "ldy =0,
t—0+4 0

we find that A -
Ly = —( / + / 19(6)d8 < (X/M)V2,
0 B

by (2.23) and (2.31). Also, by (2.6) and (2.23) we have

V324
Ly = / 6%9(1 — wy (47%X07%)%)g(0)db < (X/ M)+,
A

223

(2.34)
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oo V2A oo V24
Ls=( / - / - / )62%g(60)d6 + / 622w, (472X 67%)2g(6)do
0 0 B A
oo
= [ o=g(e)as + O(x ey,
0
and Ly < log X. Moreover, by the formula (see [7, §3.127])
o0
/ 6P~ cos(v8)dd = T(p)v P cos(np/2) for O0<p<1, v>0,
0
we find that

oo 1 o]
/ 6%%9(8)d6 = / (1— 2?2 / 62 cos(Qv)dody
0 0 0
1
= —-ZI‘(I + 2a) sin(7a).
Collecting all these into (2.34), we therefore deduce that
T =cn?X Y22 L O(M~V% 2 log X),

where ¢ is defined by (1.4). Then the formula (2.11) now follows from this and
(2.20). The proof of the theorem is thus complete.
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The Goldbach Problem
with Primes in Arithmetic Progressions

MING-CHIT Liu and TAO ZHAN

1. Introduction and statement of results The Goldbach conjecture
states that every even integer larger than 2 is a sum of two primes. One of the
most significant contributions to this unsolved problem is due to J.-R. Chen [2],
who proved in 1966 that every large even integer is a sum of one prime and an
almost-prime with at most two prime factors. On the other hand, from differ-
ent direction Montgomery and Vaughan [10] in 1975 considered the exceptional
set in Goldbach problem and showed that,

EX)=#{n<X:2n,n#pr1+p

for any primes p; and po} < X'~¢ (1.1)
for some computable absolute constant § > 0, where and throughout the paper
the letter p with or without subscript always denotes a prime, n denotes a
positive integer and X > 0 is sufficiently large. The present paper deals with a
variant of the Goldbach conjecture, namely, the problem of representing even
integers as a sum of two primes with one of which in an arithmetic progression.
Let b and r be any positive integers with (b,7) = 1 and let

EX;rb):=#{n<X:2n,(n-br)=1n#p +p;
for any p; = b (mod r) and pg}.

Corresponding to (1.1), we establish the following

Theorem 1 There exists an effectively computable absolute constant § > 0
such that for any 1 <r < X% and (b,7) =1 one has

E(X;r,b) < X179,

Remark 1 Let pu, ¢ and 7 denote the Mébius function, Euler function and
divisor function respectively. Since

(2T)

#F{n<X:2nand (n-br)=1} = X——= 4+ 0(7(r))
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for (b,r) = 1, Theorem 1 shows that almost all even integers n satisfying
(n —b,7) =1 can be written as

n =p; + p with p; =b (mod r) (1.2)

for any 1 <7 < n® and (b,r) = 1.
Remark 2 Denote by N(n;r,b) the number of solutions of (1.2). The proof
of Theorem 1 actually shows that for all the even integers n < X satisfying
(n—>b,7) = 1, with at most O(X'~?) exceptions, there holds for any 1 < r < X?
and (b,r) =1,

N(n;r,b) > r~1X1-105,

By using completely the same method we can obtain a corresponding result

in Theorem 2 below for the prime twin problem.

Theorem 2 Let
T(X,k;r,b):=#{p< X :p=b (mod r) and p+ k is also a prime}.

Then there ezists an effectively computable absolute constant 6 > 0 such that
for all the even positive integers k < X satisfying (k + b,r) = 1, but at most
O(X1-%) exceptions, there holds

T(X, k;r,b) > r~1x1-108

whenever 1 <r < X% and (b,r)=1.

It is evident that both Theorem 1 and Theorem 2 contain Linnik’s theorem
on the least primes in arithmetic progressions [6]. In fact, if we denote by
P(r,b) the least prime p satisfying p = b (mod r), then the solubility of (1.2)
implies that P(r,b} < X <« r° for any (b,r) = 1 where the constant ¢ may be
taken as ¢ = 1/6.

From Theorem 1 we can derive a similar result for sum of two primes with
both of them in arithmetic progressions and a corresponding result for the
Goldbach-Vinogradov theorem.

Theorem 3 (a) Let

E(X;r b, bs) := #{n <X:2n,m=b; +by (modr),n+#p+p2
for any p; =b; (mod r), i =1,2}.

Then there exists an effectively computable absolute constant § > 0 such that

E(X;7,b1,b2) < X178/¢(r)
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holds for any 1 < r < X® and (b;,7) =1, i = 1,2. (b) For any positive integers
N and r, let B(r,N) = {(b1,b2,b3) : 1 < b; < 7 and (bi,r) =1, i = 1,2,3,
and by + bs + b3 = N (mod 7‘)} Then there exists an effectively computable
absolute constant 6§ > 0 such that every large odd integer N can be written as

N=pi+p2+p3, pi=b (modr), 1<i<3

for any 1 < r < N° and (by,bs,b3) € B(r,N).
It should be noted that for any odd integer N > 3 the set B(r, N) is not
empty, in fact one has, for 2{ N,

#B(r Ny =2 J[ @202 g7 P-4

p|N,plr plr,piN p

0

(see [7, (4.2) with all a; = 1 and Lemma 4.3(2)]).

The problems of the kind in Theorems 1 and 2 have been considered by a
number of authors. Their results were usually stated in the form on the prime
twin problem, as in our Theorem 2. In the present article we shall concentrate
mainly on the Goldbach problem. In fact, there are no essential differences
between them. The first result in this direction was given by Lavrik [5] in
1961 who proved that, in the form on the Goldbach problem, for any positive
constants C, 4, and 1 < r < (log X)© and (b,7) = 1

DX,r)= >

T s 235

n<X n=mi+mz d)(T‘)
2|n,(n—b,r)=1 m1=b (mod r)
< X%(log X)=4-¢ |
where A denotes the von Mangoldt function, and
nr 1
o(n,r) = —— 1- ——). 1.3
0= gy 1L 0= =) =
It follows that
E(X;r,b) < X(log X)™* for 1 <r < (log X)°. (1.4)

Further results were obtained quite recently by several authors. In a joint paper
of Maier and Pomerance [8] on the large gaps between consecutive primes, they
enlarged in 1990 the range of r to some power of X, but in average sense. Their
result is
> D(X,r) < X*(log X)~4 (1.5)
r<R
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for R = X®. In other words, there exists § > 0 such that for R = X
E(X;r,b) < X(log X)~# for almost all 1 <r < R. (1.6)

By his weighted circle method and estimation of exponential sums over primes
in arithmetic progressions, Balog [1] succeeded in showing (1.5), and in turn
(1.6) with R = X'/3(log X)~® where B > 0 is a constant depending on A
only. Afterwards Mikawa [9] further extended the range of r in (1.5) and (1.6)
to1 <r < R= X"?(log X)~F by applying Linnik’s dispersion method and
the Bombieri theorem. Our Theorem 1 is a direct improvement on (1.4) and
(1.6), namely, we replace the bound X(log X)~# by X1~% and “almost all
1<r<R”in(16) by “any1<r <R”.

The proof of Theorem 1, like that of Maier-Pomerance’s result, depends
on the method of Montgomery and Vaughan in [10]. The new ingredients in
our proof, apart from the much more involvement, are mainly the following:
The starting point of our method is Lemma 1 (the basic lemma) in Section 3
which interprets S(a;r,b), the exponential sum over primes in an arithmetic
progression, as a new form involving the Dirichlet characters. Consequently,
as the circle method is applied, a generalization of the Gaussian character
sum, namely H(m, x4, Xr, ) defined in Section 3, appears, which brings us more
difficulties in establishing some useful inequalities, for example, Lemma 5 that
plays an important role in estimating the error terms I; (5 < j < 9). Moreover,
because of the appearance of r, more accurate estimates will be needed in
the treatment of I; (2 < j < 4) resulting from the possible existence of the
exceptional zero of Dirichlet L-functions.

2. Notations and treatment of the minor arcs In what follows all the
implied constants in the Vinogradov symbol <« and the constants denoted by
7,6 and c; are effectively computable and positive.

Let X > 0 be sufficiently large, 7 > 0 be a constant sufficiently small, ¢; > 0
be a large constant compared with 5, Q := X%, R := X", T := (QR)** <
X110 1 <r < Rand X/2 <n < X. For real a define

S(@):= ) logpelpa),
QR<p<X
S(a;r,b):= Y logpe(pa),

QR<p<X
p=b (mod r)

S(a,xg):= Y. logp xq(p)e(pa),
QR<p<X

where and in the sequel we use x, = x (mod ¢) to denote a Dirichlet character
modulo ¢, and xg the principal character. It is known that there is a small
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absolute constant c; > 0 such that there exists at most one primitive character
X to a modulus § < QR for which the corresponding L-function L(c + it, %)
has a zero in the region: ¢ > 1 — c2(logT)™!, |t| < T; and if such an ex-
ceptional character exists, the corresponding modulus § and zero 3 are called
the exceptional character and the exceptional zero (or Siegel zero) of order QR
respectively. Moreover, B must be simple, real and unique, ¥ must be real and
4 has the form

=2% - -p,witha=0,20r3, and3<p; <+ < ps. (2.1)

L1

Further, we define

T(a) := Z e(ma), T(a):= Z mﬁ‘le(ma) ,
QR<m<X QR<m<X
S(a,xq) — T(a) if xqg=x7,
W0 xq) = 4 S(et,xq) — T(@) if xg = XxJ (s0 dlg) ,
S(a, xq) otherwise,

and

R(m;r,b):= > logp:logps.

n=p1+pz
QR<p;<X
p1=b (mod r)

Then by the circle method we have
1
R(n;r,b) = / S(a)S(a;r, ble(—na)da
0

= (/El+[Ez)---da=R1(n)+R2(n),

say, where E; is the major arcs defined as

E=) U [g—%,gﬁ], 7= XQ!

4£Q (a,9)=1 ¢
and E; := [-Q~1,1 — Q~!]\ E; is the minor arcs. Clearly, all major arcs are

disjoint. By Dirichlet’s theorem on rational approximation (see (3, p. 150]),
every a € E; can be written as

a=(a/g)+ X with (a,9) =1, 1A <1/(¢7),@ <g <.
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Then by Vinogradov’s theorem on exponential sum over primes (see [3, p. 143])
we get
S(a) < XQY2L%, o e E,, (2.2)

where and in the sequel L stands for log X. It follows by Parseval’s identity
and (2.2) that

Y. |Re(n)?= [E 1S(@)?18 (e 7, b)|*de < XPL*?/(rQ).

X/2<n<X
We may now conclude that the number of even integers in (X/2, X|] for which
|Rz(n)| > X/(rQ"/?)

holds is « XQ~1/12L12_ Therefore, if we can prove that apart from at most
O(X 1~/ exceptions of the even integers n € (X/2, X] satisfying (n—b,r) =
1, there holds

Ry(n) > 2X/(rQ"/?) (2.3)
for n > 0 sufficiently small, then consequently, E(X;r,b) < X1~®/7) for any

1 <7 < R and (r,b) = 1. Taking § = n/7, we get immediately Theorem 1 and
its Remark 2.

In the following sections we shall use some standard notations. For example,

G(m,xq) == Y _ Xq(a)e(am/q), T(x) := G(1,X), Cq(m) := G(m,xY),

a=1

3" denotes the summation over all primitive characters modulo ¢, and p®||q
Xq

means p*|q and p**!  ¢. For clarity, sometimes, we use Xz to denote a primitive
character.

3. Lemmas and outline of treatment of the major arcs In order
to interpret S(e;r,b) in terms of the Dirichlet characters we introduce the
“factorization of an integer ¢ with respect to r”: for fixed r > 1, an integer
g > 1 can be written uniquely as

g = uhs with h = (q,7), (s,7) =1, ulh*, (3.1)

where u|h® means that p|u always implies p|h. Once we have the factorization
(3.1), then the integer qr/h can be factorized as

gr/h=hihes withhy = ] 2% he= [ »™ (3.2)

p*|lg;plu pe|Ir,plu
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The representations in (3.2} are also unique and (hq, hs) = 1.

For any fixed r > 1, the h, s, u, h;, and he defined by (3.1) and (3.2) are
functions of q. Sometimes we write, for example, ¢ = u{q)h(q)s(q) to avoid any
confusion. We further define 3 =3(q) (mod r3) by

ss=1 (mod r3). (3.3)

It seems more natural to define 3 by 3s = 1 (mod r) instead of (3.3). However,
(3.3) may simplify our treatment of I4 in Section 4. By (3.1)—(3.3) we have the
assertions:
(i) A, u, s, h1, hz and 3 (mod r3) are multiplicative, for example, if (vy, v) = 1
then h(v1v2) = h(v1)h(v2), 3(v1v2) = 5(v1)35(v2) (mod r2), etc.
(ii) hy = 1 if and only if u = 1; h; = 1 if ¢ is square-free or (¢,7) = 1; and if
hy > 1, it must be square-full.

We now define a generalization of the Gaussian sum G(m, x) based on the
factorization of q with respect to r. For any characters x4, X,(q) and integer
m let

F(u, @) = 3 0, (055 + hst)e(20);

=1
q —_—
Z abs a
H(m’ quXhl) B yan Xq(a)F(u: Xhis a)e(-’JiL— + -(;m)

Clearly, if w = 1 then h; =1 and one has
H(m7 Xg» Xhl) = G(m + bsg, Xq); H(m, X27 Xhl) = Oq(m + bsg)

If further assume that (g,7) = 1 then H(m, x4, xn,) = G(m, Xq)-
We are now ready to state

Lemma 1 (Basic lemma) Let

1 ’Lf (Q/h,’f‘) =1, e, ifh1 =1,
0 otherwise,

E(q,r):= {

and
1 ifglgr/h and hq]G,
0 otherwise.

Bar) = {
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We have that for a = (a/q) + A with1 < ¢ < Q and (a,9) =1

S(air,b) = e("’;j//’;”)z P05 0) E (IR (000

XY Xhy (IS (X Xhs Xho Xs)
Xho

_ o sy /M)t )
=PenN = gam T
+ B(g, r)e("%//’;—’;)ﬂxs)xhz (b)xs(wha) F(u, X3, a)T(N)
+ e;‘gj//zh) Z F(u, xhl,a)z (Xa)Xs(uh)xs(a)

X Z'xhg (b A7Xh1 Xths)' (34)
Xhy

In particular, if r = 1, one gets the well-known formula in the circle method

S(a) = % T(Xx9) .

@)
+ ﬁq) %:T(Yq)xq(a)W(x\,xq)- (35)

T(A) + E(g, ) —~=%(a)T(Y)

Remark In the second term on the right-hand side of (3.4), one should note
(a) the character xj Xn,Xs = Xqr/n is induced by %(= X3) and (b) if there is
p > 3, plh1, then by the property of h; given in (ii) above one has p?|h; and
p?|g. This is a contradiction to (2.1). Hence the only possible values of h; are:
1, 4 and 8. Furthermore, if 2 { 7, one has h; = 1.

Proof The second equality in (3.4) follows from the definition of W (A, x4r/n)
and 7(x%) = p(s) where s = q/h (see Lemma 2 below). So it suffices to prove
the first equality in (3.4). By (3.1) and (3.2) we know that for £ =b (mod h),
the simultaneous congruent relations

n=4{ (moduh) and n=b (mod r) (3.6)
is equivalent to

n={ (modh;) and n=5b (mod hg). (3.7)



Then

By (3.1) we can rewrite the condition, p = ¢ (mod ¢) in the last sum as p = ¢
(mod uh) and p = £ (mod s). Then by the equivalence of (3.6) and (3.7), and

235

The Goldbach Problem with Primes in Arithmetic Progressions

> logpe(pa)

S{a;r,b) =

QR<p<X

p=b (mod r)

plq
> logp e(p)).

QR<p<X
p=b (mod )
p=£ (mod q)

I

NN

o
~—~

£=b (mgd h)
(qu)zl

the orthogonality relation of characters we have
> logp e(p))

q

Y. elat/q)
QR<p<X,p=¢ (mod hy)

p=b (mod hs), p=¢ (mod s)

S(a;r,b) =
£=1,(¢,9)=1

Z:b (mod h)
T 2 2 e
Xha (X5 (£)€(al/Q)S(X, Xhy Xhao Xs)- (3.8)

DS

£=1,(L,q)=1
£¢=b (mod h)
Let £ = sfy + uhf; in the last summation over £. It follows that

q

> Xn(Ox(0)e(at/q)
£=1,(¢,g)=1
£=b (mod h)

] uh
=) X,(uhby)e(ats/s) D
=1
£,=3b (mod h)

£1=1

= e(abs/uh)x,(uh Z Xs(l1)e(als/s) Z Xh, (bss + sht)e(at/u)

(sf2)e(al2/uh)

t=1

£=1
= e(abs/uh)X;(uh)xs(a)7(Xs) F (4, Xn,» @)

By (3.8) and (3.9) we obtain that
abs/uh ZF(u Xs.,a)

Slesmb) = “bar/h)
x Y X, (uh)xa a)T(xs > Xny 0)S (A, Xb Xa Xs)
Xha

Xs

(3.9)
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To prove the lemma we now only have to show that if x5, is not primitive then
F(u, xn,,0) =0. (3.10)

Suppose that xp, is induced by x}, (so h'|hy) and 1 < b/ < hy. If B/ =1,
ie., xn, = X3,, then we have trivially that F(u,x}, ,a) = 0, where we used
the facts that (u(q),a) = 1, and the inequality h; > 1 indicates v > 1. Now
assume 1 < b’ < h;. Since we only consider those £ with (bss + hsf,hy) = 1
we see that, by [3, p. 65, (2)]

F(u,Xn,,a) = E Xh (bS5 + hsl)e(al/u)
£=1
u R

Z Z oo (t)e(bss + hst ) (at/u)

T(Xh) e=1 t=1

;"

uw

Z X (t)e(bsst/h) Z e (a—j—M—E) .

Xh, =1

Note that there exists p|h;/h’, which implies p|u. However, p { a since (a,q) =
1. Then we have that u t a + (uhst/R') for any 1 <t < h/, from which it then
follows F(u,Xxh,,a) = 0. This finishes the proof of (3.10) and the basic lemma.

Applying (3.4) and (3.5) to the integral over major arcs, we obtain that

Rin) =Y Z / (q+/\;r,b)e(—(%+>\)n)d)\

q<Q a=1,(a,q)=17 "1/7

= ZIj , (3.11)

i=1

1/7'

where

= Mcq(bsﬁ -n) . T*(Ne(~nA)dX
<Q, (qz/:h r)=1 ¢(Q)¢(qr/h) —/—I/T

RACRIIICH .
q<z:Q #(a)o( qr/h) XS)XS(Uh)XhZ (b)H(-n Ty XsXqr Xhl)

X / T P OVTO)e(—nn)dn

-1/



The Goldbach Problem with Primes in Arithmetic Progressions 237

T 0
Li= T pla/h)(xxg)

MO D) s - [ TOT (-

9<Q, dlg
(Q/hvr)=1

(g, )T (XX )T (xs
fi= 3 DRI 6 b H o o k)

9<Q, dlq

y / T E ) e(ena)an,

1/T

I:= 3, ¢<q)ﬁ((zr/h) Z Z (%e)%s () D Xy (BYH(—1, X X3 Xy

q<Q Xho
1/7

x/ ) T(AW (A, Xhy Xk Xs)e(—nA)A,
-1/7

P T 0 M) e ACLE RS

9<Q,dlq Xhg
/T
X/ T()‘)W()‘vXthths)e(—n)\)d/\

-1/7
. wa/h) (% \C(bsE —
s 2 Gaear/m 2 TCET =)

q2Q, (g/h,r)=1

1/7
x / T)W (A, xg)e(—nA)dA,
_1/

(2) 2) (2
Is ;@;aq ¢(qr/h)2 (T xR O (W) H (=, XD, 33)
x / l//T FOOW (0, x(D)e(=nA)dA,
1/r
S = —(2) (%2 (2) u
I*’"QSZQ¢<q>¢<qr/h)§ 2% ) 2 TR )

% Z T(ygl))H(_n X,(II)X§2),Y(2))

1/
< WOXOW ARG De( N

Here it should be noted that xjp, is always primitive; that in I, I4, and Ig
the character Xu,Xn,Xs = Xqr/n is induced by % and is therefore unique for

every ¢ satisfying g|gr/h and hy|§; and that in Iz and Iy we use x(l) nd
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X¢(12r)/h = Xgﬁ)xgxf) to denote the characters appearing in (3.4) and (3.5)

respectively, in order to avoid any ambiguity.
In order to estimate I; (1 < j < 9) we need some more preliminary lemmas.

Lemma 2 If Xmodq is primitive then |7(x)| = ¢*/. If X (mod q) 15 a primitive
quadratic character then 7(x)? = x(—1)q.

Lemma 3 Let x, be a character induced by the primitive character xg.; we
denote it by x4 < Xg-. For an arbitrary integer m put ¢’ = q/(m,q). If ¢* { ¢’
then G(m, xq) = 0. If ¢*|¢’ then

G(m, xq) = X (m/(m, 0))d() ™" (¢ )1uld' /a*) - (d' )T (5)-
In particular, G(m,xq) = Co(m) = pu(g/(g,m)p(0)¢~ (¢/(g,m)), T(x) =
1(a/q*)xq-(a/q*)7(x5+), and if x4 is primitive then G(m, xq) = X, (M)T(xq)-

The above two lemmas may be found in [10, Section 5] or [7, (4.9) and (4.4)].
For any integers m, ¢t and any characters x, and xp, we define

u
F*(u, xn,,a,t) := Z Xh, (bs3t + shl)e(al/u)

£=1

and

q —
. . " abst  a
H*:=H (ma Xq’Xhut) = Z Xq(a')F (u, Xhlvaat)e<m' + Em)

a=1

Lemma 4 Let s3(q) stand for s(q)3(q). Then we have the following three
assertions:

(1) If u(q) = 1, ¢ = q1q2 and (q1,q2) = 1 then
Cy(m + bs3(q)) = Cy, (m + bs3(q1))Cy, (m + bs3(q2)) ;
G(m + bs3(q), Xq) = Xa1(2)Xq, (91)G(m + b53(q1), Xq, )G (m + b53(q2), Xg,)-

(2) H(ma Xq» Xh1) = H*(mv XqrXhys 1)
If (g,r) =1 then H* = G(m, xq); if u(q) = 1 then H* = G(m+bs3(q)t, xq)-
(3) If ¢ = q1q2 and (q1,q2) = 1 then
H*(m, Xqy Xha(a)rt) =Xa1 (92)Xaz (91)H™ (M, Xa1» Xha (011 855(02))
X H*(m’ Xq2» Xhl(ﬂz)’t3§(q1))'

In particular, if u(qy) =1 then

H*(m, Xqs Xh1(q)r ) =Xa1(92)Xq: (01)G(m + bs3(q1)t, Xq,)
x H* (m7 Xgq2s Xh1(g2)» tsg(ql))-
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The lemma can be proved in a standard way (see, for example, the proof of
[11, Lemma 1.1]), by recalling (3.1), (3.2), and (3.3).

Lemma 5 Let

Y = Y(n; r,v,v1, Xﬁ()l)v X'S)Zl)’ Xhl)

(e o]

1
Z Wlf(xﬁl’x%(xﬁ’x?)l |H (=, xS %, xh)|-

g=1,v|q,n1|s

For any primitive characters xg,l), XSﬁ), and xn, one has

Y < canr/(¢(r)é(nr)) ,
where c3 > 0 is an absolute constant.

Proof By Lemma 2 we know that T(vag)’r(xvl x%) = 0 unless
(qv™1v) = (sv7hv1) =1 and p?(qut) = W?(sv7t) =1, (3.12)

which we henceforth assume. Let d = (v,v1), v = dv/, v; = dv]. From
(v1,7) =1 and (3.12) it follows that

(d’ ’U') = (d7 ’U;) = (’U',Ui) = (dv"”) =1

Let ¢ = dv'vik. By (3.12) we have that d, v/, v}, and k are pairwise co-prime
and p?(v]) = p%(k) = 1. Then s = s(d)s(v')s(v})s(k) = dvis(v')k/(k,T).
By (3.12) we see that u(q)s(v’) = v'/(v',r) and then gr/h = dvi(rv'/(v', 1))
x k/{k,r). Applying Lemma 3 with m = 1, and Lemmas 4(2) and 4(3) with
u(k) =1 and t =1 we get that

Ir )T O] . pR(k)|Cr(bs3(k) ~ n)|
Y S @R dw) e /o) 2 $(k) (k] (k, 7))

k=1,(k,dv'v})=1
x [H* (= n, XX XKD X v $56)) -

Applying Lemmas 4(3) and 4(2) with (r,d) = 1 = (r,v}) the above |H*| can
be written as

|G(—n, x&l)xfiz))G(—n, xf}?)H*(—n, X, Xhy(v'), SS(dV1K))].

v

On the other hand, by Lemma 2 and Lemma 3 we have

16(=n, X)) = X () (D < VL,
1G(—n, x$"x)| < $(d)(d/(n,d))~*\/d] (n, d).
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Then
v d @)V o
“¢(d)  ¢d/(n,d)) ¢*v1) P(W)B(v'r/(V',T))

o0

P2 (R)[Cu(bs3(k) )|
X
o7/

x | H* (=1, x50, Xhy oy S5 (0 B)) |. (3.13)

We now show that
|H*( - n, xf}), Xha (v $3(dV1K))| < Vv'u(v') (3.14)

under the factorization of v’ with respect to r (see (3.1)). Denote by K the
left-hand side of (3.14), and let ¢' = (v/,7)u(v’). Appealing again to Lemmas
4(3) and 4(2) with (r, s(v")) = 1, we get that

K < |G(=n X 0 H (=1, X5, X (), 55(d0'v1))]

L CCH R || BT AT
p*llg’,ptu(v’)
x H |H*(—n,X§)%’)7Xh1(p°‘),m)l

pell¢’,plu(v’)

<s@)2 I o2 I] 1 (-nx®, xneey,m)| (3.15)
Pl pu)  pollgplu(v)

where m satisfies (m,u(v’)) = 1. For p®||¢’ and plu(v’) we suppose that
PP|lu(v’). Then 0 < B < a, p*~#||(v/,r) and p*|hi(v’). In this case uh(p®) =
h1(p*) = p* and

* * bm—n
H (= mx ngom) = S @ (8, Xpe 0 m)e( =)
a=1

_ZX”“(”’”*P" %0 Zx‘“( (Imont 6l )

pa
o
x,‘,},) Z Xpe (b + p*~ ﬂE)S('i,la)(bm -n+ Ep"“ﬁ).
£=1

Obviously
|H* (=1, X2 s X (py, M| < V% - 2. (3.16)
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The bound (3.14) now follows from (3.15) and (3.16). With (3.13) and (3.14)
we have that

yo 4 @O v uw)
=P @, d) P F /)

$ LRG0 —n)
N T (X5 N

X

The last sum is C, (b53(p) )|
p(bss(p) — n
M}}vi L Sl )

By Lemma 3,

Cp(-n)=p—1 ifplnandptr,
Cp(bs3(p) —n) =< Cp(—n)=-1  ifpi{nr, (3.17)
Cylb—m) = =1 i pir (= pt (b—n)).

On writing f = p/(p — 1), a straightforward calculation yields

Y<<—Hf(d”)) s

pld/(n,d)
2 w(@)(',r) 2 o ._1__£_
Xrgf v plg’(rf =9 ¢(r) ¢(mﬂ).

In the last step we use v’ = u(v')(v’,7)s(v’) and the inequality ¢*/2¢~2(q) < 1
for any g > 1. This finishes the proof for Lemma 5.

Lemma 6 (Gallagher) For any y > vX we have

> 3 / W xa)Pdr) " < QX2 exp(—cs/m)
d<QR Xxd
where

Qe { (1-B)logT (< 1) if B exists, } (3.18)

1 otherwise,

and c5 > 0 is an absolute constant.

This lemma is essentially contained in [10]. The detailed proof of it may also
be found in [11, Lemmas 11.12 and 11.13]. Here the additional factor Q3 in
our Lemma 9 is obtained as in the proof of [7, Lemma 2.1].
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4. Estimation of I; (1 < j <9) In what follows we shall use another small

quantity € > 0 which can be taken arbitrarily small, for example, we may write
0 < & < 6/100.

Estimation of I;: By [11, Lemma 11.11] one has that

_ w(@ula/h) -
Il =n Z mcq(bSS(Q) - n)

<Q

or ¥ iy bss(a) - )

(Q/h ?“) 1

e S st
=" 2 Sodtary S @ -

offx ¥ + X ]W;gz(%wq(bﬁ(q)—nﬂ)

>Q q<
(g/hr)=1  (q/h,r)=1
= 1™ oI + 1)y

say, in an obvious order. Since we may suppose that u?(¢q) = 1, it then follows
that u = hy =1 and s = ¢/h. By (3.17) and (1.3) it is easy to check that

(m) _ " ___ up/(p,1)) s3(p) — 7
1 = 5 (- 0607 m 5@ —m)

Cp(—n Cplb—n o(n,r)
7(%1}(”@—1)2)1}(1‘ ) =

Let ¢ = hq' in the first error term. We get by Lemma 4(1) and {11, Lemma
11.5)

I<f1><<—2“ LA (s - C (-]
i

X TACOI . 14e -

<<¢<)Z ®) 2 gyl <X

Similarly, the same upper bound holds for I fez). Then

o(n,r)

¢(r)

I = n+O0(X*eQ™1). (4.1)
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Estimation of I, and I3: We may suppose that p?(q) = 1. In this case by
property (ii) of u(q) in Section 3 (below (3.3)), we have u = 1 = h; and hence
q = hs, ho = 7. Define

Il »* and ¢ =4/q" (4.2)
>4, pir

So (¢',r) =1 and (§',4") = 1. From E(q,r), i.e., dlgr/h (= sr), we know that
¢ |r which yields that (§/(¢,r),r) = 1 and then by (4.2}, we have

= (dv T) and q/ = Q/((ja T)'

Since §|sr if and only if §'|s and §”’|r, by Remark (a) on (3.4) we obtain that
Xs(q) © Xg and Xn,(q) < Xg Where x5 and x; are the two unique characters

satisfying xg - xg# = X. Define J(n) := > mA-1. By [11, Lemma
QR<m<n-QR
11.11]

- (@xa (M)xa" ()7 (xz x3) G (bs3(q) —

7 X0 (J T)).
o(q)$(gr/h) n, X Xg)(J (n) + O(7))

9<Q,§'|s

Let ¢ = ¢'k. Then (§',k) =1 by u{q) # 0. By Lemma 3 (where m = 1) with
s/§ = k/(k,r) and Lemma 4(1) with §’ = s(¢’) we have

T(xgx3) = 70 k) (k,r))xg (k/ (k, 7)),
G(bs3(q) — n, xg'X3) = Xz (k)G(—n, x4 )Ck (bs3(k) — n).
Then
— (j(n 0@ )xg O) o
I2 - (J( ) + O( )) ¢(q'/)¢(q‘lr) ( 7X¢1 )

p(kyu(k/(k,r))xq (k/(k, 7)) xg ((k, 7)) xq (k)Cr(bs3(k) — n) .
k<Q/d (ki) =1 ¢(k)g(k/(k,))

X

By Lemma 3 and Lemma 2 we have 7(x4 )G(—n, x4) = 7(xg)xq (—n)7(xg5) =
Xq (n)c’j’ Then

=(F )@ )xe (M)xg (0)F
=(J(n) + O(7)) vy
p(k)pu(k/(k,7))Cr(bss(k) — n)
’ kSQ/@%;C,é'):l o(k)p(k/(k,T)) '
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Arguing similarly as in the estimation for I;, we get

a(n,r) 5 1+e
I = o) J(n)Dy + O(X1*Q7T),
U(n T) 14
Iy = o0 J(n)As + O(XteQ™Y),
where
Dy = xg(M)xg (0D, Dz = xg(n)xg(n—b)A
ss= @ [T 5 “y

pl@ pinr
Note that for i = 2, 3 we have A; = I, =0 if (n,¢’) > 1 or u(§) > 1.
Estimation of Iy: Define

I(n) := Z (m(n — m))é"l.

QR<m<n~QR
By [11, Lemma 11.11]

(XX 7(Xs)

I4 = (f(n) +O(T)) Z qu/h)){hz (b)Xs (Uh)H(_n7 )Zszg, le(q))

q2Q,dlg, hlg
Let ¢ = Gk. We may assume that (§,k) = 1 and u?(k) = 1, otherwise by
Lemma 3 we have T()ng) = 0. Similarly, as in the case of I3, by Remark (a)
on Lemma 1 we have

Xs(g) < X@»  Xhi(g)Xha(g) < X' (4.4)

However, hi(q) is no longer always equal to 1 in the present case, which makes

the estimation of Iy more involved. First note that hi(gk) = h1(§) = hi(§")

depending only on § and r, and that the only possible values of h; are 1, 4 and

8. Moreover, hy(§) =1if 2{§ or 2¢tr. Consider two cases separately:

Firstly we assume that u(§) = 1, i.e., hy(§) =1 and u("’) = 1. In this case,
= (¢,r) and §' = §/(q,r). By (4 4) ie., XxsX0 = anxq,xk, Lemma 3, and

Lemmas 4(2) and 4(3),

T(Xxg) = T(X)u(k)X(K), T(xs) = T(xa )ulk/(k,7))xa (k/ (K, 7)),
H(=1, XXX, Xha(g) = Xa (k)X (§)G(b = n, xg)Cy (—n)C (bs3(k) — n).
Note that xp,(b) = x4+ (b) as (b,r) =1 and hi(g) = 1. Then
—(in nXa(n = 8)xg (0)Cq (~n)xg (~1)d
~im o) H0@)H@
p(k)uk/(k, ) Ci (bs5(k) ~ n)
X
k<0 /g(%m_l d(k)p(k/(k,T))
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Arguing similarly as for I, we get

o(n,r)

I4=f( ) ¢()

Ny + O(X1HEQY,
where

s = X (O)xar (n ~ Bxg (~1)#7 (@) Cp(-n) [] 2=

plq,p’fnr

Note that if (n,§’) = 1 then we have Cy (—n) = u(¢’).

Secondly we assume that u(q) > 1. By (2.1), (3.1), and (3.2), we may suppose
that hy(§) = hi1(§") = 2% and u(§) = u(§") = 25,0 < B < a < 3. Then we
have

@' = 2], 24 & with w(@) # 0; and r = 224, zm,} (45)

thus §” = 28(q,r)

and
Xha(g) < X225 Xha(q) < Xg/» Xs(q) <> X@

where X2¢, X3y, and x4 are determined uniquely by x2=«Xgy x7 = X. By Lemma
3 and Lemmas 4(2) and 4(3) it follows that

I = (F(n) + 0<T)>$(q%%——r(/’gf—)5xﬂf(b>xa (@@ )xag (%) xae (@)

oot ) T At

k<Q/§
(k,@)=1
X H*(—n, X22, X, (25}, 55(kG))-
By (3.3) one has s3(k§) =1 (mod %), =1 (mod 2*). Then
H*(_na X225y Xhy (2“)33(’“7)) = H(_na X2, Xh1(2°‘))

is independent of k, and moreover, by (3.14) it follows |H(—n, x2a, X4, (22))| <
22/2 .98 On noting that

ar/(d,r) =2°¢r1, G(b—n,xg) = xa (b~ n)7(xz),
Cy(—n) = $(@)o™ 1@ /(n, PN(@ | (n, T)),
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we obtain by similar argument as for 5 that

VIVTHI)V T V22"
H(P(r1)d(2%)(7")8(' /(n, 7))
3K (k)u(k/(k,7))Cr(bs3(k) — 1)

o(k)p(k/(k,T))

|14 < (n+O(1))

k<Q/q
(k,d)=1

o(n, )
=75

nAy +0(XeQ™1) (4.6)

where

4= — L p-1
fa= ¢(q'/(n ), H =2~ $@/( 7)) pwg,mp”g' “n

Estimation of I; (5 < j <9): The estimation of I; (5 < j < 9) is quite similar
to each other. We take Iy as an example. We have

L=Y3"Y 57 / W (A, xo)W (X, Xa)e(—nA)dAx

v<Q Xv d<Qr Xd

L EMrETD )% (u
x Y R (X (uh)

q2Q,vlq, dlgr/h, hald
x H(=n, {2, x2).

Let vy = ] aq, ptr P*- Then by d|s(q)h1(g)h2(q) (= qr/h) one gets v1|s and
(s,d/v1) = 1. Hence x, + x3,. On noting that v; depends on d and r only,
we have by Lemma 5,

LY ZZ/ WO, Xl WO, xa)ldh
v<Q Xv d<Qr Xxd -
o0

1 x .0 (2)
X ~ vzl;, N mlf(xvx )T XONH (=10 X035, Xg» X i)
=1 y» 18
1 nr 2

< "
where

w= ([ " woora)”

d<Qr Xd
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By Lemma 6 and (1.3) one obtains that
r 6
———=XQ° exp(—cs5/n).

Similarly, the same estimate also holds for I; (5 < j <8). Then

9

S Il < S X0 exp(-ca/n). (48)
=5

5. Proof of Theorem 1 In this section the constant 7 is taken sufficiently
small. Consider the three possible cases separately.

Case 1: There is no exceptional zero 3. Then I = Is =I; =0 and 2 =1
(see (3.18)). By (3.11), (4.1), and (4.8) we obtain

o(n,r) o(n,m)X o(n,r)

$(r) 3(r) =290

In what follows we always assume that there is an exceptional zero 8.
Case 22 (n,§’) > 1 or u(§) > 1. In this case Ag = Az =0o0r Iy = I3 =0.
Then similar to Case 1, by (4.6)

R =

n+ O(XH'SQ'1 + exp(— 05/77))

a(n r)n a(n, 'r)
¢(r) é(r)

+ (LSBT X expl—ca/n)) + O(X Q7).

If there is a prime p > 3 satisfying p|¢’ and p t n, then we have, by (4.7),
|A4| < 1/3. From this and the inequalities /(n) < n and X < 2n, it follows
that

Ri(n) 2

M

Ri(n) > %’8;)
a(n,r) 1+¢ (n T)
+O( 50 Xexp(—cs/n)) +O0(XeQ™1) > ) n. (5.1)

If there is no p > 3 satisfying p|¢’ and p { n, then by (2.1) we have
§ <2°-3(n, ). (5.2)

Since I(n) < n?, we have

a(n,r) Q3o(n,r) e
Ra(n) 2 =552 (n = nf) + O (=g 5= X exp(-ca/m)) + O(X' Q).
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If f < 1—(log2/logn), ie., nf-1 < 1/2, we obtain again (5.1). Otherwise one
has, by Q@ = (1 — B)logT in (3.18), that
Ri(n) > o(n,7)(24(r))"'n(1 - B)logn
+0(o(n,r)¢(r) 1B X exp(~cs /) + O(X'+Q™1)
> o(n,7)(4¢(r)) "' n(1 = B)logn + O(X***Q7").

We note that the number of n < X satisfying (n,§) > Q/?* is at most

< Y Y 1<XxQVrg < X0/,
d|§,d>Q1/24 n<X,dln

We then only consider those even integers satisfying (n,§) < Q'/2* which,
together with (5.2) and (4.5), gives ¢’ < 24QY?* and § = §'§" < 96rQY/?4,
Then by [3, p. 96, (12)] and (1.3) one gets, except for at most < X1~"/7) even
n e (X/2,X],

cg o(n,r) nlogn
4 ¢(r) §/%log’§

>5 ng;)r) (nlogn)Q™1/4r=1/2(log X) =2 + O(X'**Q")

> 2X/(rQ'?).

Rl(n) 2 +0(X1+6Q—1)

Case 3: (n,q') =1 and u(§) = 1. If there exists p > 5, p|¢’, by (4.3) we have
|A} <1/3 and then |A;} <1/3, 5 =2,3,4. From J(n) < n it follows that

a(n,r)

1, . 2 -
Ra(n) 2 =755 (50 = 1) + 5 (n = T(n)))
Qo(n,r)

(r)
a(n,r)

o), b Po(n,r)
> 255y =)+ 055

Similar to the argument in Case 2 we can obtain that

+0( Xexp(—C5/17)) +O0(x*eQ™1)

X exp(—cs/n)) + O(X Q).

Ri(n) > 2X/(rQ"3). (5.3)

Finally, we consider the case where p|¢’ implies p < 3. Since (n,§’) = 1 and
2|n, it follows that the only prime factor of ¢’ is 3. So ¢ = 3. In this case
{A] =1 and then |A;| =1 for ¢ = 2,3,4. If Ag+ A3 >0 then

o(n,r) 5 Q30(n,r)

n—nﬂ
a7 )+ o(=5s

Ry(n) > X exp(—cs/m)) + O(X+5Q7Y).
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We may again get (5.3) by similar method as in Case 2.

Now assume that Ag + Az < 0. Then by the fact that A; and Aj are real,
we must have Ay = Az = —1 and then by (4.3) we have x4 (b)x4(n —b) > 0.
Hence Ay = p(3)x3(—1)xg(b)xg'(n — b) = 1 since x3(—1) = —1. Then

_omn) o F )+ Bn
+ 0(%}(@@_% /n)) +O(Q X1+, (5.4)

By I(n) = (n?-1I%(8)/T(28)) + O(QR) and J(n) = (nf/B)+ O(QR) we have
n - 2J(n) + I(n) = n 3}‘; 4+ n2h-1 ég ; +O@QR).  (55)
If 1 -3 > (log(3/2))/ logn, then by 1 — 3 < 1/logn in (3.18) we have trivially
n - 2J(n) + I(n) = n(1 — 201 + n2B-1 L O(1 - §)) + O(QR)
=n(1 —n?1)2 + O(n(1 - B)) + O(QR) > n/10.
By this and (5.4), (5.5) one gets

Ran) 2 ez + O( ) X exp(-ca/m) + 0(Q141+9) > Foen

Now assume that 1 — 3 < (log(3/2))/logn. Then 1 — mf~1 > 2(1 - B)logm
for any 1 < m < n, and

n—2Jm)+Im)= Y (1-mP (1~ (n-m)P!)+OQR)
QR<m<n-QR
4
6(1 - B)? Z logmlog(n — m) + O(QR)
Va<m<n—+/n
> 1—On(1 — B)%log? n + O(QR). (5.6)

By (5.4), (5.6), and (3.18) we get that

a(n,r)
Ri(n )_10¢() n(l —f3)%log?n

+ O(Q o(n,r)

(r)
n(1 - B)%log’ n + O(Q~1X+*).

X exp(-cs/m)) + O(X™+Q™")

o(n,r)

~ 11¢(r)
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Finally, invoking [3, p. 96, (12)], § = 3(4,7) < 3r, and r < QV/*, we have

_a(n,7)
(r)

After the above discussion for all the three cases we conclude that apart from
at most O(X1~("/7)) exceptions of the even integers n € (X/2, X] we have (2.3)
and therefore R(n;r,b) > X/(rQ'/?). This finishes the proof of Theorem 1.

6. Proof of Theorem 3 The assertion (a): Suppose that (b,r) = (b;,7) =1,
t=1,2. Let A(r,b) ={n:2|n,(n—b,r) =1and n # p1 +po for any p; = b
(mod r) and pe}, and B(r,by1,b3) = {n : 2|n, n = by + b (mod r) and n #
p1 + p2 for any p; = b; (mod r),i =1,2}. We have

B(T, by, b2) C A(’I‘, bi), 1=1,2. (6.1)

Ri(n) > cs nQ~Y4(log X)~% + O(Q™1X**) > 2X/(rQ'/?).

In fact, if (6.1) is not true for ¢ = 1, then there exists an even integer n €
B(r,b1,b2) but n ¢ A(r,b1). Since n = by + by (mod r) implies (n — by, r) =
(b2, ) =1, it follows that

n=p1+p2, p1=b (modr) (6.2)

is soluble. However, from n = by + by (mod r) one actually has that p, =
n —p; = bz (mod r) in (6.2). This is a contradiction to n € B(r, b1, b2), and
(6.1} is then proved. Take §' = §/2 where § > 0 is the constant in Theorem
1. We obtain by (6.1) and Theorem 1 that E(X;rb1,b2) < E(X;r,b1) <
X170 < r X0 /p(r) < X1-0/D Jg(r) = X1 Jp(r) for any 1 < r < X% and
(bi,r) =1,i=1,2.

The assertion (b): This may be derived directly from (a) and the following
known result on 7(N;r,b), ie., the lower bound for the number of primes
p < N with p=b (mod r).

7(N;r,b) > N/¢?(r) if r*<N and (br)=1 (6.3)

where N is sufficiently large and ¢ > 0 is an effectively computable absolute
constant. In fact, the recent work of Wang [12] or Heath-Brown [4] for ex-
ample, clearly shows that (6.3) holds for ¢ = 8 or even 5.5. Since (6.3) and
part (a) indicate that #{N —p; : 3 < p1 < N and p; = b1 (mod r)} >
N¢=2(r)E(N;r,bz,b3) for r < min(N% N/¢), it then follows that there must
exist py = by (mod r) satisfying

N —p1 =p2+ps with p; =b; (mod ), i =2,3.
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On the Sum of Three Squares of Primes
HIROSHI MIKAWA

1. Introduction Shortly after I.M.Vinogradov’s proof in 1937 of the ternary
Goldbach conjecture, L.K. Hua [5] investigated the solubility of the equation

Pi+ps+pi=n (1.1)
with primes pj;, j=1,2,3. A necessary condition on n is that the congruence
P42 +2i=n (modg), (1.2)

subject to (z;,¢9) = 1, j=1,2,3, is soluble for any ¢. An elementary argument
implies that this local solubility is equivalent to the condition that n belongs
to the set

H={n:n=3 (mod24), n#0 (mod?5)},

the density of which is 1/30. Hua proved that almost all n € H can be put in
the form (1.1). Here “almost all” means that the number of exceptional n’s
not exceeding z, say E(z), is o(z) as £ — o0o. In 1961 W. Schwarz [12] replaced
the bound o(z) by O(z(logx)~#) for any fixed A > 0. Then in 1993 M.-Ch.
Leung and M.-Ch. Liu (8] proved that there exists an absolute constant § > 0
such that

E(z) < z'7°

The explicit value of § that is implicit in their argument is very small.

Recently, T. Zhan [13] considered the short interval version of this problem.
The aim of the present paper is to give a genuine improvement upon his result.
To state his and our results, we need first to introduce some notation: Let
R(n) denote the weighted number of representations of n in the form (1.1);
the weight is equal to [];_, , ;logp;. It is conjectured that as n € H tends to
infinity we should have

R(n) ~ gg(n)\/ﬁ, (1.3)
where 8r(s, (on)
r(8,n) pr{p,n

S = @R H -1 (1.4)

p: pnme
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with r(g,n) being the number of solutions of (1.2). Zhan proved that the
asymptotic formula (1.3) holds true for almost all n € Hn [z, z + 2], provided
© > 3/4. In particular it is implied that if § > 3/4 then

E(z +2°) — E(z) < 2%(logz) ™ (1.5)

for any fixed A > 0. Our improvement is embodied in

Theorem Let © >1/2 and A > 0 be given. Then we have

Z |R(n) - %6(71)\/5 ’ < 8 (logz)~4

z<n<z+x®
n€H

where the implied constant may depend on © and A. Hence (1.5) holds for
0>1/2.

In his work Zhan proved and used an inequality [13; Theorem 3] to estimate
the mean values for exponential sums over squares of primes in short intervals.
We shall not require such a result but our argument is, instead, somewhat
tricky, for it depends on a certain peculiarity of the sequence of squares. That
is, our main tool is Lemma 1 below, which is not as strong as Zhan’s inequality.
So his argument would probably be able to yield a further reduction of the value
of  in (1.5). Our assertion © > 1/2 appears to be the best possible that our
argument can attain. In another respect it should be worth remarking that
in dealing with the singular series &(n) we shall appeal to the argument of
M.B. Barban [1; §5 |. Also we record that we were inspired by C. Hooley ([4;
Chap.II)).

We are indebted to Professors Zhan and Liu for their preprints and kind
comments. We would like to thank the organizer for his kind invitation to the
symposium.

2. Lemmas We begin with the fundamental

Lemma 1 Suppose that |o — a/q| < ¢~2 with (a,q) = 1. Then we have

c
Z e(ap?) logp < z'/? (q_1 +z V44 qx‘l) (log qz)P
p?<z

where e(z) = exp(2miz) as usual; and 0 < C < 1/4, D > 8 as well as the
tmplied constants are absolute.

This assertion goes back to I.M. Vinogradov, and has been refined by several
people; see for example [3; Lemma 2].
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We then collect some facts about the singular series; for the proof see, e.g.,
[6; Chap.VIII]. Thus let us put

swa= 3 (%) @a-1 (21)
(m,q)=1

" G(g,n) = l;q (%)Be (—%n) , (2.2)
(a,9)=1

which is a multiplicative function of ¢q. Either if p > 2 and m > 1 or if
p = 2 and m > 3 then g(p™,a) = 0 and thus G(p™,n) = 0. For p > 2,
g(p,a) = <—;—a G — 1, where XY is the Legendre symbol and G is the

p
Gaussian sum attached to it. When p > 2, we have

~(p-1) (3 (%)p—l— 1) if pin,
(%‘)p"’%(%)p% <%>p+1 if pfn.

g9(g,a) < 7(9)g*/?, (2.4)

where 7 is the divisor function, and

(p—-1°G(p,n) = (2.3)

Thus we have

G(g,n) < ¢~ 'logg. (2.5)

On the other hand we have

{ 1+G(p,n) =pr(p,n)(p-1)=°  ifp>2 (26)
1+ G(2,n) + G(4,n) + G(8,n) = 87(8,n)p(8) 3. '
and

r(p,n) >0 forall p>5and all n,

r(5,n) >0 if and only if n Z0 (mod 5), 27)

r(3,n) >0 if and only if n =0 (mod 3),

r(8,n) >0 if and only if n = 3 (mod 8).
Also we shall use the arithmetic function defined by

W(m, z) = { 1 either i'f plm impliessp < zorif m=1, (2.8)
0 otherwise.
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The following assertion is well-known; see, e.g., [11; Kap.V, Lemma 5.2]:

Lemma 2 Suppose that z = z(z) — o0 as z — o0, and (logz)/(logz) >
loglogxz. Then

Z U(m, z) € zexp (—(logz)/(log 2)).

m<z

3. Proof of Theorem Let® > 1/2and A > 0 be given. Let = be sufficiently
large and H = 2°. We may assume H < z. Put P = L? where L = logz,
and B = B(A) > 0 is to be specified later. Using the Farey fractions of order
Q@ = P72, we dissect the unit interval U = [1/Q,1 + 1/Q]. Let the major
arc M be the union of all intervals I{q,a) = [a/q — 1/¢Q,a/q + 1/qQ] with
1<a<gq< Pand (a,q9 = 1. Then I(g,a)’s are mutually disjoint and
contained in U. Write m = U \\ M which we designate as the minor arc.
We have, for z < n < 2z,

R(n)=/US(a)3e(—na)da

where S(a) =3 2c9, e(ap?)logp. A familiar argument transforms this into

R(n) = % > Glg,n)vn + / S(a)de(—na)da + O(z*2LP™Y).  (3.1)

q<P

In fact we are at the situation to be able to appeal to the Siegel-Walfisz theorem
[11; Kap.IV, Satz 8.3].
We then state our main lemmas:

Lemma 3 The infinite product defining &(n) converges for any n € H, and
we have

v= ¥

z<n<z+H
neH

2

&(n) - 3 Glg,n)| <<V2L*P+HLP.

g<pP

Lemma 4 Suppose that supem |S(@)| < 2/2L~F. Then we have

W= / / 1S(a1)®1S (a2)? mm( o ia2”>da1da2

< 23200 4 He[Y0-F
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where ||z|| is the distance from x to the nearest integer.

Postponing the proofs of these assertions to Sections 4 and 6, respectively,
we shall proceed to our proof of the theorem.

For this purpose we consider the integral in (3.1) with the aid of Lemma
4. We note first that for any n € m there exists a rational number a/q such
that |a —a/q] < ¢72, (a,q) = 1 and P < ¢ < Q. In view of Lemma 1, the
assumption of Lemma 4 is then fulfilled with —E = —BC + D, provided that
B is sufficiently large. So we take B = B(A) > 0 to satisfy 10— BC+D = —A.
Note that 18 — B < —A. Then we have, by Lemma 4, that

D

2

S(a)e(—na)da

r<n<e+H VM
< / / SE)PISE@)P| S e((or — az)n)|darday
mJm z<n<z+H
< W < HzL™4. (3.2)

Collecting (3.1), (3.2), and Lemma 3, we infer that

2
Z ‘R(n) - G(n)g—ﬁl <« Vz+ W+ HzL*P?
z<n<z+H
neH
< (@V2PP + HLY' P~ Ve + HzL™4

< 73?L*B L He=4 « HzxL 4,

since H = z®, © > 1/2. This proves the theorem.

4. Singular series In this section we shall prove Lemma 3. To this end we
consider the truncation of the infinite product for G(n), which we may put, in
view of (2.6),

sa [ (1+Gn)),

2<p<P

where s, =14+ G(2,n) + G(4,n) + G(8,n). We modify this as

s IT a6y IT a+ctm) (1-(3)5)

pin pin P
2<p<P 2<p<P
-1
bt (%
< I (1-(F)r) = stmmamvs)
pin

2<p<P
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say. It follows from (2.6) and (2.7) that if n € H then this finite product is
positive. And, by (2.3) , we find that, uniformly for z < n < 2z, n € H,

3, Y1(n)Y2(N)Y3(n) > H (1 - —) > (loglogz) 3. (4.1)
3<p<P

In the definition of Y;(n), j=1,2,3, we drop the restriction p < P and denote
the resulting infinite products by Z;(n), respectively. We note that Z;(n) is
actually a finite product. The product Zz(n) is absolutely convergent, for we
have, by (2.3),

1+ G(p,n)) (1 - G}’-) p—1> =1+0(p72). (4.2)

Also the product Zsz(n) converges; it is the value at s = 1 of the Dirichlet
series L(s,x) corresponding to the quadratic field Q(v/—n). Hence, we have
&(n) = 8,21{n)Zs(n)Zs(n) for any n € H.

On the other hand we obviously have

snY1(n)Ya(n)Ya(n) = Y G(q,n)¥(q, P).
g=1

On noting that ¥(g, P) = 1 for all ¢ < P and that Z;(n), Y;(n) <« log L for
1=1,2,7=1,2,3, we have

2 2
Sn)- > Glgn)| < Y 1Z;(n) - Ys(m)PL+| 3 Glg,m)¥(q, P)
q<P i=1,2,3 qg>P
Thus we have, for the V defined in Lemma 3,
VaW+WV+V34+ V) (4.3)

in an obvious arrangement of terms.
Let us consider V; first. By (2.3) we have

}Z’IEZ; =[[a+6en) =11 (1 -3 <_71> p—1> (1+0(p~?))

pln pln
p>P p>P
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where 7,(n) is the number of representations of n as a product of v factors,

and K is an absolute constant. This gives

Z1(n) ’
ViL Z -1
z<nla+H Yl(n)
m3(d) (H 7k (d)
P<d<2z P<d<2z
< HL*P71,

Similarly we have, by (4.2),

Ze(n) _ [Ia+06™2)=1+0@P™),
Yan) ~ L
p>P
and hence Za(n)
2\ 2p-1
VoL > O —1‘ < HL?*P !,

z<nlz+H

(4.5)

We proceed to V3. If n € H then n = 3 (mod 4). Thus the Jacobi symbol

~ is a non-principal character to the modulo < n (see [7; I.Teil, Kap.6 ]).

Then the Pélya—-Vinogradov inequality [2; §23] yields that for any M > P

751{:1 m<M
m 2
(mvn)=1 (m,:f’:’);l

That is, we have

Z3(n) — Y3(n)

_ ¥ <—Fn) 1—\Il1$lm,P)+O<x1](;L)+O<Z T(m, P)

m<M
2tm
(m,n)=1

m>M

> () 5 F)aro(5)

We put M = Pz/2. Then the first O-term is O(LP~1!). By partial summation

and Lemma 2, the second one is at most

exp (~(log M)/(log P))log P < LP~1.
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Since ¥(m, P) = 1 for all m < P, it follows that

N\ a
Va L E § (_> -m
m m
z<nlz+H P<m<M
n=3 (mod 4) 2{m, (m,n)=1

= LU + HL?P~?, (4.6)

2
+ HL(LP™1)?

say, where a,, = 1 or 0. Expanding the square and exchanging the order of

summation we get
-n -n
< ml m2 (ml ) ( ma )
z<n<z+H,n=3 (mod 4)
2fmy 2tmo (n,mim2)=1

P<mi <M P<ma<M

By the law of quadratic reciprocity we have (—_n) (—_n) = (m) . Unless
my ma n

mime

mymeg is a square, the Jacobi symbol is a non-principal character to

*
the modulo < 4myms. Thus we have, again by the Pélya—Vinogradov inequal-
ity, that

U«H Z T(l)-i- Z Z (mymg)~ 12

P<i<M P<mi<M P<ma<M

< HP! Z () + ML <« HL*P~' + £\/2LP.
<M

Substituting this into (4.6) , we have
Va « HL®P™ + 2V/2L2P, (4.7)

We then turn to V4. Put N = HP~1. As before, we have

> Glam¥@P) < Y Elu(q, P)

>N q>N
& (log N)(log P) exp (—(log N)/(log P)) < P~}

by (2.3), partial summation and Lemma 2. The definition (2.2) of G gives

Y GantegP) = S Y (g ( (q))) e<—9n).

P<g<N P<gq<N 1<a<gq q
(a,q)=1
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Hence the dual form of the additive large sieve inequality [9], [10] gives that

2
> 1D Gan¥e,P)| < Y. Y (H+gN) lg(q’ +HP2.
z<n<z+H | ¢>P P<g<N 1<a<gq
(a,9)=1
Then by (2.2) we find that
(a)2ag? 9q _
Vi< ¥ +a) LS a0 + HP
P<g<N LA V—
H 7'(‘1)4 -2 17 p-1
—+N )L —— + HP HL''P~ . .
< ( 5+ > > Pl < (4.8)

g<N

Combining (4.3), (4.4), (4.5), (4.7), and (4.8), we obtain the assertion of Lemma
3.

5. Minor arc In this section we shall prove Lemma 4. Our task is to estimate

lar — ozl

1
W= [ [ 151t min (H, 2 ) dordas
mJsm ]
for [ = 3. To this end we first consider the case of | = 4: We note that
[ 1511 < L3 +md = m3 + m < 22}
U

<L r)? <Ll (5.1)

<2z

Since
1S(e)|*S(a)* < 1S(e)®1S(a2)? + |S(c)*|S () .

we have that

1
llon — el

<</_Z/m|5’(a)|6lS(a+ﬁ)‘2min< wl)dadﬂ

Expanding the square out and performing the integration with respect to 3,
we get

Wy <</ / |S(a1)|®]S(c2)|? min (H, )daldaz
mJm

Wik > J(h)I(h)‘ /m |S(a)|6e(ha)da‘, (5.2)

Ih|<2x
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Here we have

J()y= ) logplogps < L2{ o Eh=0, (5.3)
= 0g p1 log p2 . .
o 7(h) h>0,
p},p3<22

and

Taking the absolute value inside in (5.2), we have that

< min (logH |h|> (5.4)

0<h<L2z

W, < / 1S(a) |6da( OI0) + 3 J(rI( h))

< sup 1S(cx) |2/ 1S(¢ |4d§( VL+H Y h)) L?

0<h<2z
& (11/2 + H)x2L11—-2E (55)

by the assumption given in Lemma 4, (5.1), (5.3), and (5.4).
We may now turn to W3. The initial step is the same as above; in place of
(6.2) we have

Ws < Y J(R)I(h) ’ / |S(a)]4e(ha)da’ :
[R]<22 m
Separating the term with A = 0, we split up the remaining range of h according

as (k—1)H < |h| < kH (1 £ k < z/H). Then by (5.3), (5.4), and Cauchy’s
inequality we have that

Ws < 21213 / 1S(c)|*der
m

1
+ L2 <L+ > m) o T(h)‘ a)|*e(ha)da

2<k<z/H y<h<y+H
1/2
2) /

< aV2[3 /U 15(6)|4de

1/2
+Lso§§f§§m( Z T(h)2> ( Z

y<h<y+H y<h<y+H

/m |S()|*e(ha)da
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Hence via (5.1) and (5.5) we obtain

Ws < :E3/2L10 +L3(HL3)1/2(W4)1/2
< 22010 4 (H(zV/? + H))Y2z[O-E
< 220" + Ha[O°F,

This obviously completes the proof of the bound stated in our theorem.

6. Exceptional set We now prove (1.5) in the range 6 > 1/2. It should be
stressed that for this particular purpose we do not need Lemma 3.
We put &'(n) = s, [[,,<p(1 + G(p,n)). Then we have, by (4.1),

&'(n) » (loglogz)~3

uniformly for z < n < 2z, n € H. Also it follows from (3.1), (3.2), and (4.8)
that

> |rm - S mval
z<n<z+H
neH

2

< Y. D.G(@n)¥n,P) +W+HzL*P!
z<n<z+H [¢>P

<« HzLV""B 4+ HzL =4 + £3/2L1° « HzL™ 4

for any A > 0, provided H = z1/2+¢ with an arbitrary small but fixed € > 0.
We thus have
Z |6'(n)|?x < HzL™4.
z<n<z+H
n€H, R(n)=0

This proves our claim.
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Trace Formula over the Hyperbolic Upper Half Space
YOICHI MOTOHASHI

1. Introduction The aim of the present paper is to establish an analogue of
the Kuznetsov trace formula for H3 the hyperbolic upper half space, i.e., the
Beltrami model of the three dimensional Lobachevsky geometry. Although we
shall restrict ourselves to the case of the Picard group, our argument readily
extends to general Bianchi groups defined over arbitrary imaginary quadratic
number fields.

Let us first introduce the basics: Geometrically H® is embedded in the
three dimensional Euclidean space C x R so that its points are denoted by z =
(z,y) = (z1+z2t,y) with 1,22 € R and y > 0; and algebraically it is embedded
in the Hamiltonian algebra so that we have z = x + y7 where 3> = —1 and
iy = —7i. These two notations for the points of 3{2 will be used interchangeably.
As a Riemannian manifold, }3 carries the metric ((dz1)? + (dz2)2 + (dy)2)? /y
and the corresponding volume element du(z) = y~3dzidzady. The Laplace-
Beltrami operator of the manifold or rather its negative is denoted by A. We
have

A = ~y*((8/021)* + (8/022)* + (8/8y)?) + y(8/By).
As to the motions of the points in H3, let us put

T(g{’?’) = {Z — (az + b) . (lZ + h)_l - a, bala h € C with ah — bl = 1}’ (11)

where the algebraic operation is that of the Hamiltonian. In the coordinate
notation this generic map is

_ (az + b)(lz + h) + aly? Yy
2=@y e ( EE A L )

We see readily that
T(H3?) = SL(2,C)/{£1}.

The metric and thus the volume element as well as the Laplacian are all invari-
ant with respect to the maps in T(H3?); that is, these maps are rigid motions
of H3.

The concept corresponding to the full modular group acting over H? the
two dimensional hyperbolic space is here the Picard group I composed of those
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elements in (1.1) with a,b,{, h € Z[i], i.e., Gaussian integers. It is known that
I acts discontinuously over 3(3, having the fundamental domain

F={z:z1 <l za<i,m+2220 23+ +9y% > 1}

(see Picard [8]). We may take F for a three-dimensional manifold carrying the
above metric. It should be noted that the volume of ¥ is finite:

|F] = 277%Ck (2), (1.3)

where (g is the Dedekind zeta-function of the field K = Q(%).

Moving to the analytical structure, let L?(F,dy) stand for the set of all
T-invariant functions over H® which are square integrable with respect to du
over F. This is a Hilbert space equipped with the inner-product

(f1, f2) =Af1(z)mdu(z),

which is obviously well-defined for any f1, fo € L?(F,du). The spectral reso-
lution of A over L?(F,du) is analogous to the case of the full modular group
over H2. What we need in our discussion is the Parseval formula thus arising,
and to state it we have to introduce further concepts: The non-trivial discrete
spectrum of A is denoted by {)\; =1+ n? 1 j=12,.. } in non-decreasing
order, and the corresponding orthonormal system of eigenfunctions by {v;}.
It is known that the number of the A;’s is infinite and that x; > 0 for all j > 1.
Here the relevant multiplicities, which are always finite, are counted. We have
the Fourier expansion

Pi(2) =y Y pi(n)Kix, (27|nly)e(n, z]).
neR

Here K, is the K-Bessel function of order v, e(a)} = exp(2mia) as usual, and
[n, z] = Re(nZT). Also we need to define the Eisenstein series

E(zs)= Y y(1(2),

'Yeroo\r

where y(z) denotes the third coordinate of z, and I, is the stabilizer subgroup
in I' of the cusp at infinity. We note that

Foo—_—FtUZFt
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where I3 is the translation group {z — z+b: b € Z[i]}, and 1 is the involution
1(z) = —z + y7. In another expression we have

Foo%’{j:(l I{),:t<_i I;I>:b,b’eZ[i]}/{:|:1}.

That is, we have

Z 2 2
i T
t,h)=1

It is easy to check that the series converges absolutely for Re s > 2. As we shall
briefly show in the third section, we have the Fourier expansion

m CK(S - 1) 2—s

E(z,s)=1y° + ~1 Cx(s)
2méy -1
+ e In|*~ o1-s(n) Ks—1(27Inly)e((n, z]), (1.4)
[(s)Ck (s) n%i] '

where (i is as above, and o,(n) = %zdln |d|?* (d € Z[i]). Thus E(z,s) is
meromorphic over C as a function of s, being regular for Res > 1 except for

the simple pole at s = 2, the residue of which has a relation with the assertion
(1.3).

With the above notation we may state the Parseval formula: For any
f1, f2 € L*(F,du) we have

oo o) = S (o5 o) + / et fEGT)d.  (L5)

j=0

Here 1o = |F|~% and

&(t, f) = L F(2)E(z1 - it) du(2),

where the integral is to be taken in the sense of the limit in mean (cf. Theorem
1.1 of our book [7]).

The spectral expansion (1.5) can be proved by following closely the dis-
cussion in {7, Chapter 1]. Although the latter is developed for the full modular
group over H?, the argument carries over into our present situation with minor
modifications. To some extent we have a simpler task here, for the free-space
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resolvent kernel of A + X has an explicit algebraic expression in terms of the
non-Euclidean distance (see also Selberg [11, p. 76]).

Having said these, we are now able to state our trace formula:
Theorem Let

S(m,n;l) = Z e([m,v/l))e([n,v*/1]) (vv* =1modl)

v mod !
(v,l)=1

be the Kloosterman sum for Gaussian integers I, m,n. Let us assume that the
function h(r), r € C, is regular in the horizontal strip |Imr| < % + ¢ and

satisfies
h(r) = h(=r), h(r) < (1 +|r])7>"*
for an arbitrary fized € > 0. Then we have, for any non-zero m, n € Z[i],
o ———
pi(mpi(n) . / ®  giw(m)ow(n)
sinh(mrz) M) T2 | i+ in)P

h(r)dr

j=1

o0
.—_7r‘2(5m,n+6m,_n)/ r2h(r)dr + Z 1|=28(m, n; A(2rw) (1.6)
e lez[i]
1£0

with w? = mn/l12. Here Om.n 15 the Kronecker delta, and

oy =i [ g k), (L7)

oo Sinh(mr)

3 (t) =27 I ()5 (D), (1.8)

where J};(t) is the entire function equal to J,(t)(3t)~" whent > 0 with J, being
the J-Bessel function of order v.

It should be stressed that the choice of the sign of @ is immaterial, for J}(¢) is a
function of t2. We could put J, (t)J, (f) in place of J,(t); the above formulation
is to avoid the possible ambiguity pertaining to the branching of the values of
Jy.

This trace formula was announced in [6] and [7, Section 2.7); what is devel-
oped below is a full proof of our claim. Because of our past experience with the
full modular group over H?2, it appears reasonable to suppose that (1.6) should
have applications to various analytical problems involving Gaussian integers.
Especially interesting is the possible application to the mean value problem
of the zeta-function (k. For, if everything develops as we expect, then the
result should have a relevance to the eighth power moment of the Riemann
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zeta-function. In order to fully discuss such an application, we shall, however,
need to devise a theory of the inversion of the integral transform (1.7), and
to establish an analogue of Kuznetsov’s sum formula (7, Theorem 2.3]. It is
also conceivable that trace formulas twisted with Grossencharakters would have
more relevances to the problem related to {x. To these topics we shall return
elsewhere.

We note in passing that the trace formula of the Selberg type for the Picard
group is given in Tanigawa [14], Venkov [15], and Szmidt [13]. The theory of
various arithmetic Eisenstein series over 3 is developed in Kubota [4] and in
Elstrodt et al [1]. Further references can be found in these articles.

Acknowledgement The author is much indebted to Prof. M. Jutila for his kind
camments and corrections.

2. Bessel gear As a preparation of our proof of the theorem we shall collect
here integral formulas involving Bessel functions. Some of them are redundant
for our purpose, but we list them because we want to emphasize a close rela-
tionship between our argument and classical works in the theory of the Bessel
functions.

Lemma 1 Let us suppose that [ is sufficiently smooth on the positive real
axis and decays rapidly at both ends of the line. Then we have

fly) =772 /00 rsinh(7r) K (y) /000 f(0) K (v)v™Ydvdr, (2.1)

—00
where K, is the K-Bessel function of order v.

Proof An equivalent assertion is stated in Lebedev [5, (5.14.14)] with a more
precise condition but without proof. In [7, Section 2.6] is given a proof, which
depends on the observation that this identity is nothing else but the result of
applying the differential operator

D, = —y*(d/dy)® + s(s = 1) + 4
to the integral transform of y‘% f(y) with the resolvent kernel of y=2D;, where

the s is a complex parameter to be chosen appropriately.

Lemma 2 Let h(r) be an even function which is regular in the horizontal
strip |Imr| < o for a certain a > 0, and let us assume that h(r) = O(e~27I"l)
there. Then we have, for |Imt} < a,

h(t) =72 /00 Kis(v)v™? /00 rsinh(nr) K, (v)h(r)drdv. (2.2)
0

—0o0
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Proof This assertion is obviously the dual of the previous lemma but can be
proved independently. The decay condition on h could of course be replaced
by a less stringent one. A proof is given in [7, Section 2.6]. It rests on the idea
to replace the factor v~! in the integrand by v*~! with s € C.

Lemma 3 We have
i 100
53 Asin(27A)[wy + N (w2 + A)D(ws + A)
—ico
X I‘(wl - )\)F(u)z - /\)P(wg - /\)d)\
= l"(w1 + wz)l"(wl + w3)F(w2 + wg). (23)

Here the path is curved to ensure that the poles of I'(w1 + M) (we + A) (w3 + A)
lie to the left of it, and those of I'(wy — A)[(we — A)T'(w3 — A) to the right. It
is assumed that parameters wi,ws,ws are such that the path can be drawn.

Proof This is the formula (2.6.6) of [7], where it is proved by the combination
of (2.1) and the well-known Mellin transform of the product of two K-Bessel
functions.

Lemma 4 We have, for any positive b and complex n with Ren > 0,

/00 e %Jo(ab)(a/2)?" 1da

0

1 / TE+mTE+7n+ HI(-E)
(@)

= 2¢
on3i TE+1) b=~ dg. (2.4)

On the right side the path is the vertical line Re§ = a with —Ren < a < 0.

Proof The left side is equal to 2!~2'T'(2n)F(n,n + 3;1; —b?), where F is the
hypergeometric function (see [16, p. 385]). Then the Mellin-Barnes formula
[17, pp. 286-288] for F yields (2.4). It should be observed that both integrals
in (2.4) are rapidly convergent.

Lemma 5 Ifa >0 and lRe (p— %) > Rep > —1, then we have

12
J( u? +a? ) ulbtldy = opghtl- pP(,U+1) p— u—l(a) (25)
u2+a2)70

Proof This is due to Sonine. For the proof see either [16, pp. 415-417] or
Sonine’s original account [12].
Lemma 6 Ifa,b>0 and Re)l > —%, then we have
/" Jr(Va2? + b2 — 2abcosT)
o (a2 + b2 —2abcosT)>/2
= /aT(A + 1)(ab/2) " Jx(a) T (b). (2.6)

(sin7)2 dr
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Proof This is due to Gegenbauer (see [16, p. 367]). An accessible proof can
be found in Sonine [12, p. 37].

Lemma 7 Ifa, b>0 and Re) > —%, then we have

§7r
/ cos(a cos T)Jax(bsinT)dr
0

= SrhBWE T + ) h(A(VE T8 ). @2.7)

Proof This can probably be attributed to Gegenbauer. It is tabulated as the
formula 6.688(1) in [2] and mentioned in other tables as well. But its proof is
hard to find in literature. Because of its importance in our argument, we shall
give two proofs: In the first proof we begin with the expansion of the integrand
by means of the defining series for the J-Bessel and the cosine functions. The
order of the integral and the resulting double sum can obviously be exchanged.
Computing the integral termwise we have

37
/ cos(acosT)Jap(bsinT)dr
0

(=1)™*"(a/2)*™(b/2)*"T(n + A + 3)
- _‘/— (b/2)” Z F(m+1)F(n+1)I‘(n+2)\+1)I‘(m+n-T-/\+1)

_VEh/2)P K (=1/49N L TS A-1
T (A + 1 Z1"( ZN min! /O“n H(1-u) i du

_ VEb/2)P & (—1/4)N /1 o s
b 1-—-
SO+ 3) f Z TN + DLV + v +1) Jo (07 +b"u) " (ull — )72
_ VEW®/2)* [* IA(Va? +bPu)
T 2T(A+3) Jo (2\/a2 + b%u )
It is easy to see that the last integral can be computed by means of (2.6); and

we get the identity (2.7). The second proof is more direct: We consider instead
the proof of the equivalent identity

= (u(1l - w))*~Hdu. (2.8)

[N
3

/0 cos((a — b) cos 7)Jo(2Vabsin 7)dr = %ﬂ'J,\(a)J,\(b), (2.9)

where a, b, ) are as above (see (2, 6.688(3)]). We differentiate twice the left side
with respect to a, and rearrange the result using the relation

[u?(d/du)® + u(d/du) + u® — 40?] Jox(u) = 0.
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Then we find that the left side of (2.9) is a solution of the differential equation
for Jy(a). On noting that the integral is obviously of order O(a®e?) as a
tends to 0, we may conclude, by the basic theory of cylinder functions, that it
should be a constant multiple of Jy(a). The computation of this constant is
immediate. This ends our discussion of (2.7). It should be worth remarking
that the second argument yields, via (2.7)—(2.8), a proof of (2.6) that is different
from both Sonine’s and Gegenbauer’s.

Lemma 8 Letp >0 and |[Re}| < % Then we have, for any real 9,

in
/ cos(2pcos ¥ cos 7) Koy (2psinT)dr
0
2

~ 4sin(2m) [H—A(Pew) - HA(pe“’)], (2.10)

where J, is as above.

Proof This is a consequence of the previous lemma. We shall, however, use
rather (2.9) than (2.7): Since

K,(v)=

ey -0 — L)} (2.11)

where I, is the I-Bessel function of order v, it is sufficient to show that
1

/2 cos(2pcos ¥ cosT)Ixa(2psinT)dr = %WJA(pew). (2.12)
0

To this end we put (2.9) in the form

1
57!’
/ cos((a — b) cos 7)(sin 7) 2 J3, (2Vabsin 7)dr = 272 1r g3 (a) I3 (b),
0
where J is as in (1.8). By analytic continuation this holds for all a,b € C. So
we may put, for instance, a = pe®?, b = —pe~*’, getting (2.12) immediately.

The following basic integral representations are listed here for the sake of
convenience:

Jo(u) = ——Q-LE)V—) /01r cos(u cos 7)(sin 7)2Vdr

C J/Al(v + 1
(largu| <, Rev > —1), (2.13)
1 T(n+ iv)
Jl/ = — —_— 2 2 _2'rld
(u) 271 /(a) ri-n+ %u) (u/2) n
(u>0,Rerv > —2a > 0), (2.14)

Ko = 35 [ T+ 40— $)w/2)

(u >0, 2a > |Rev|). (2.15)
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3. Poincaré series Now we introduce the Poincaré series: We put

Pn(z,8)= Y y'(1(2)exp{ = 2nlmly(v(2)) + 2mi[m, z(x(2))]}  (3.1)
YENNT

with I being as above and with an obvious convention (cf. Sarnak [10] mod-
ulo many blemishes). Since |Pp,(2,s)| < 2E(z,Res), the series is absolutely
convergent for Res > 2; and P,,(z, s) is ['-invariant for such an s.

We need to expand P,,(z,s) into a double Fourier series with respect to
the variables z1, 5. To this end we note that in view of (1.2) we have, for
Res > 2,

P,.(2, s) = 2y°® exp(—2n|mly) cos(2nm[m, z])
1, _
130 Y (b i)

1€2]i) heZli)
10 (h,0)=1

X exp ( 2|y + 2miRe (mh m(lx + h) )) ’

iz + B2+ |y U (lz+ A2+ |y

where h*h = 1 mod . The inner sum is divided into parts according to A mod [;
and to each of the sub-sums we apply Poisson’s sum formula. After a simple
rearrangement we get, for Res > 2,

Pp(z,8) = 2y° exp(—2n|mly) cos(2n[m, })
1 o -2 ) I
+ 5y Z e([n, z)) Z 728 (m, n; 1) Ag(m,m; 1), (3.2)
nezii] ulsi[)z]

where S(m,n;1) is as above, and

o0 00
Ammtin)= [ [ qup 1y
—00 J—00
2nlm|  2mifl”%, my)
I2(pl2+ 1)y (Ju?+1)y

with p = gy + iuo. In deriving (3.2) we exchanged the order of sums. This is
legitimate. For, as can be seen by shifting appropriately the two paths in (3.3),
we have, uniformly for Res > 1,

X exp ( — 2miy(n, p] — )d,uldug (3.3)

As(m: n;l§y) < exp(_‘nly) (3'4)

provided y is not too small; the implied constant may depend on m but does
not on I, n.
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We note here that the assertion (1.4) follows from (3.2). In fact we have
E(z,s) = $Py(z,s), and

o fm(s—1)! ifn=0,
As(oyna L y) = {z,n.s|ny|3—1KS_1(27r|n|y)/F(S) ifn#0

as well as

Z |l|_235(0, nyl) = {4CK(S —1)/C¢k(s) ifn=0,

=10 do1-5(n)/Ck(s) ifn#0.

10
Proofs of these four identities are standard, so we skip them.

Now we have the bound:
S(m,n; 1) < |l||(m,n, Dioo(l), (3.5)

which can be proved by following Gundlach [3] (cf. Sarnak [10]). This and (3.2),
(3.4) imply that P, (z, s) exists at least for Res > 32- and there it is an element
of L*(,du) whenever m # 0. Hence we can apply the Parseval formula (1.5)
to the inner product of two Poincaré series. The result is stated in

Lemma 9 Let m,n € Z[i], mn # 0, and let Resy,Re sy > % Then we have

(Prm(:,81), Pu(-52))

(471.)2 Ss1— szlmll sllnll $o
= T e - D(s2 - 1) {Zpa(m A(s1, s2;k;)
oo
2 Uzr(m)aw(n) B
e /—oo |mn | |T(1 +ir)¢x (1 + ir)|2A(51’ 32,%7”)d7“}, (3.6)

where
A(Sl, S2; }\) = F(Sl -1+ )\)F(Sl —-1- /\)F(S2 -1+ )\)F(SZ —-1- )\) (37)

We do not give the proof, for the reasoning is essentially the same as in the case

of the full modular group over H? (see [7, Section 2.1]). It would, however, be
expedient to note this: The argument involves an application of the unfolding
method. It requires a bound for the sum of the absolute values of the terms
in (3.1), and the necessary estimation can be accomplished with the expansion
(1.4).

4. Transforming the inner-product Next we shall develop a geometric—
arithmetic treatment of the inner-product in (3.6). This is obviously the core
of our discussion.
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First we modify (3.3) a little. Moving to the polar coordinate and invoking
Poisson’s formula (2.13), we readily find that

U

Ag(m,n;ly) = 2”/0 @i

m
Jo (27ru|ny + m‘)

2m|m)|
X exp ( TR T l)y)d

On noting the remark at the end of the previous section, we have, by the
unfolding method,

(Prm(,1), Pa(-,32)) = (bm,n + 6m,—n)T (51 + 52 — 2)(4m|m])?~*1 72

1 00
*t3 / e 2rinluyoz=a =1 N " 1|72 §(m, n; 1) A, (m,m; L y) dy,
0 lez[i)
1#0

provided Re sy > % and Re sy > 2. Then we assume temporarily that Re s >
Res; > 2. Given this, we may take the integral inside the sum. For A,,(m,n;

l;y) is now bounded uniformly for all involved parameters; and thus the last
expression is absolutely convergent. As a consequence we have that if

Resy, Resy > 3 (4.1)
then

(Pra(c381)s Pa(32)) = (B + 8,51 + 83 = 2)(dmlm] =2~
+ (| /|n]) $2=0

x Y U717 %28(m, n; 1) B(2m/[mn/|I], Do; 51, 52)- (4.2)
rezii
0

Here ¥y = argw with w as in (1.6), and

o0
B(p,¥; s1,52) =/ Y2770 (p, 05 2 (s1 + s2);y)dy
1]

C(p 19'7"y)=/°o “ Jo( |ye + (ye” 1|)
S N RV S |
ply+y” 1))du

X ex (—
P uZ +1
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To confirm this assertion we only need to show that the sum in (4.2) converges
in the region (4.1). To this end we observe that

B(p,¥; s1, 82)
00 00 -1
e2—01—1 u _ply+y™h)
< /0 Y /0 (u? + 1)Fervon) 7 ( ViZ+1 )dUdy
>0 u 2p
- /o (a2 3 1)erron o= (\/u2 ¥ 1)d“’ (43)

where Res; = 0; (j = 1,2), and the implied constant is absolute. So we have,
via (2.11),

B2r+/Imn|/|l], Y0; 51, 82) < |1]!7*=2 log(|I| + 1) (01, 02 > 1)

uniformly in [. This and (3.5) end the verification.

Our task is now to transform B(p,?; s1, s2) into an integral involving the
A defined by (3.7). It should be stressed that we are now discussing the trans-
formation of B(p, ¥ s1, s2), and thus the conditions on sy, s2 to be introduced
in the sequel as far as (4.15) are independent of (4.1).

We begin with a separation of the parameters in the integrand of C(p,?;
7;y). By means of the Mellin inversion of the relation (2.4) we have

exp(-+ ) Jo(-++) = _r /(a) (p(y+y‘1))—2n

43 Q—uﬁ
L€ + T +n + 5)T(=¢) _( 2sind \2\¢é 5

where a > 0, § < 0 are small while satisfying a + 3 > 0; note that the naming
of the path in the integral on the right side of (2.4) has been changed. This
double integral is, however, not absolutely convergent. To gain the absolute
convergence we shift the contour Re& = 8 to Re¢ = B’ with a small 5’ > 0.
We have

-1

exp(- - )Jo(-+-) = exp ( - p(yu-;—?j—l))

1 =2 [ DE+MTE +n+)T(=E)
Jo O

C)E 2
o TE+1) ( )u dédn.

We replace the integrand of this new double integral by its absolute value,
and see, by Stirling’s formula, that the integral is O(u?? (u? + 1)®) with the
implied constant depending only on «, §’. Thus, inserting the last identity
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into the integral for C(p,?; 7;y), we have a triple integral which is absolutely

convergent, provided Rer > 1+ a+ . Given this condition, we may perform
the u-integral first, getting

Cp,¥7y)=R - / L

813 Sy T(r =)
X(MF@+nW@+n+%W@—£—n—UN—O
oty + 5772 (1 (2220 dgan, (44

where o _1
Rz/ +exp(_w_>)du
o (W+1)7 VuZ+1
We insert (4.4) with 7 = Z(s; + s2) into the integral for B(p,; s, s2).
We readily see that the triple integral thus obtained is absolutely convergent

provided
|Re (s1 — Sz)l <2a, Re(s;+ 82) >242a+ 2ﬂ’. (4.5)

We arrange the order of integration by putting the &-integral inner, the y-
integral middle, and the n-integral outer so that we have, given (4.5),

1 (0/2)
B(p,¥;s1,82) = R* — /
(3551, 52) 57% Jiwy T (51 7 52) =)

oo y82—81—1 1
A — T T =
Ay B SRS

2sin?d
y+y!

X D(3(s1 +52) — €~ 1= DD(=6) (1~ (222)") dedyan,  (4.6)

where R* is the contribution of R above. We have

o 2/0 ErpTET K- (g (4.7)

(cf. (4.3)). We shall use a somewhat roundabout argument to transform the
&-integral in (4.6); this is for the sake of completeness. We expand the factor
(1—(2sin¥/(y+y~1))?)¢ into a binomial series, and take the integration inner;

that is
e 1 2sin® \2v
co.de =
/(/) 6 ;P(V—Fl) (y+y‘1)

X /(p') LE+MTE+n+ DT(3(s1 +52) —€ —n— DI(—€ + v)dE. (4.8)
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We have to verify this. So we shall estimate the generic vth term in the sum.
The part of the integral corresponding to |Im £| < v contributes, by Stirling’s
formula,

v
< u_"'%A”/ (lu] + 1)°(ju| + v+ 1)V 8 “iem 3y < v 1A,
. had 4

where A = (2sin9/(y + y~1))? < 1, and the implied constant as well as c are
independent of v. The remaining part contributes
Al/ o 2
——— 44 vV, - ﬂud
<<l"(1/+1)/,, u(u+v)’e u,

which is obviously negligible in comparison with the first part. Thus (4.8) has
been confirmed. Then by Barnes’ integral formula {17, 14-52] we have, in place
of (4.8),

e = —2miTer + PR + o) —n -1

+ 27!"1:[‘(%(51 + 82) — 1)1—‘(%(31 + 32) - =
00

Z Cn+v)L(n+v+1) ( 2sin ¥ )2"
T+ DT (s1+s2) +n+v—3)\y+y~?

The vth summand is O(V"‘%Re(sl"‘”)A") by Stirling’s formula.
Thus, given (4.5), we may insert the last result into (4.6), and exchange
the order of the sum and the y-integral. We get, after a little rearrangement,

/oo ysz—sl—l / dé‘d
—_ ) y
o W+yH2 Jis
= — 22703 (L (51 + 82) — 1 — D)T(3(s1 — s2) + MT(L(s2 — 51) + 1)

24_2"‘31_327r2i1"(31 + 52— 2)

T(3(s1— s2) +n+)T(3(s2 — s1) +n+v)
XZ D+ DGt +2) +n+v =)

(sing)?. (4.9)

If we insert this into (4.6), we would not be able to exchange the order of the
n-integral and the sum over v, for the resulting expression does not converge
absolutely. To overcome this difficulty we use Gauss’ integral representation of
the hypergeometric function. So we have, in (4.9),

oo

P(%(Sl —s2) +1)
- F(Sl -

M

1
2

1

=0
/ w(s2=s0 =11 _ )51-3(1 — (sin9)2u)d -0 gy, (4.10)
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We then insert (4.9) together with (4.10) into (4.6). The contribution of the
first term on the right side of (4.9) cancels R* out. In fact it is equal to

1 T(3(s1~s2) + MT(3(s2 — s1) + n)p‘z”dn
4 J(a) 3(81 4 82) —

o= )r(%(s1 — s2) + T(3(s2 — s1) +m)p~2"

0 u
X/O (u? + 1)%(s1+sz)~ndUdn'

‘We exchange the order of integration, which is obviously legitimate, and use the
Mellin-Barnes formula (2.15). Then by (4.7) we see that our claim is correct.
We now have

—s1—sg, —3 L (51 + 82 —2) T(3(s1 = s2) + 1) 0
T(s1—4) Ji (5081 +582) — 77)

1
x [ ueret ot — (1 = (gD dudn. (411)
0

B(p,9; s1,82) = —i2!

Given the condition
|Re(s1 — s2)| <2, Re(s1+s2)>2+42a

with a small «, the double integral in (4.11) is absolutely convergent. The
n-integral is taken inner, and we have, by the Mellin—-Barnes formula (2.14),

1_321—‘(81 + 89 — 2)

) _ p
B(p, 7-9’31a32) - 4\/7_7 281+82]_"(51 — %)

1
X / u”'%sl"%(l - u)s‘_%(l - (sinﬂ)zu)%(l_sl)
0

X Jg;-1(2py/u~! — (sin )2 )du.

Further, replacing u by (u? +1)~!, we get

1— 82
) o =P (51452 — 2) u2s1-2 s
B(p, 9; 81, 32) —8\/_ 231+32I‘ 31 S1— (u, + 1)’5 2

x (u? + (0050)2)7(1 3‘).]31..1 (2pv/u? + (cos 9)? )du.
To relate this with Sonine’s formula (2.5) we use

1

2 Y-so . I —2¢
R ey IRCUCEE BT
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where 0 < 6 < Resy; — % So we are led to

1 32I‘(sl + 83 — 2)
231+32’2\/_I‘ (s1— $)T(s2 — 3)

x/(a) F(g)F(SQ—%-—&)/ 251262 Jsy— 1 ZP\/W wde

(u2 + (cos9)2)z(s1-1)

B(p’ 197 S1, 52)

For the double integral converges absolutely, provided
Res;,Resy > % +6> 2(Res; + %),
which we may suppose temporarily. Then we have, by means of (2.5),

(2p)?~*- st(81 + 55— 2)

2i/m(s1 — 5 Y'(sg — §)
1
3

E_
v /( IO =3 = (s — § - §)Jc_ypeosd)(L5) e (@12)

B(pa'ﬂ 31)‘92)

It is easy to see that the integral is absolutely convergent, provided
0 < 6§ < min{Re sy, Ress} — 1.

This means that the interim restriction on s;, s2 have been dropped.
We replace the J-factor in (4.12) by the representation (2.13), getting

9 [i7
/(6) coedE = —ﬁ/o cos(2pcos ¥ cosT)
X / T(s1— 3 — &) (s2 — 5 — &){psin T)zg_ldng. (4.13)
8

The inner integral is essentially a value of the K-Bessel function of order s; —s5.
But we rather appeal to (2.3). Init weput wy; = 81 —1,wp = 85 —1, w3 = %—5
assuming that Re§ = § is small and that

Resj, Resy > 1. (4.14)

We have that
)
272 (81 + 52 — 2)

D(s1—3—&D(s2— 35— &) =

x / Asin(2rA)A(s1, s2; WT(2 = € + MT(E — € — A)dA
©



Trace Formula over the Hyperbolic Upper Half Space 281
with A defined by (3.7). Thus we see, by this and (2.15), that the inner integral
in (4.13) is equal to

2
ﬂp(sl Fp— / Asin(2mA)A(s1, s2; A) Ko (2psin 7)dA

We then find that

2 _2(2p)2 s1—82
F(Sl )]_"(5 / /\Sln(Qﬂ-’\)A(slvs% )

X / cos(2p cos ¥ cos 7) Koy (2psin T)drdA.
0

B(p,?¥;51,82) =

nl-—-

By virtue of (2.10) we now have, given (4.14),

; (2]))2 81—82
F(S] had —)F(Sz -

B(p,9; s1,82) = ) /(0) AA(351, 82; A)Z)\(peiﬁ)d)\. (4.15)

Since (4.1) is contained in (4.14), the expression (4.15) can be used in
(4.2). Hence we have proved

Lemma 10 Let m,n € Z[i], mn # 0, and let Res;,Resy > % Further, let
w be as in (1.6). Then we have

(P (- 81),Pu(-,32)) = (6m,n + Om,~n)T (51 + 52 — 2)(47"|m|)2—81_32
,(411')3_’1‘32|m|1_31 inll—sg
© T AD(s1 - DT(s2 - 3)

x 3 [U72S(m, ;) / M(s1, 55, )a(2r)dA. (4.16)
lezZ[i]
10

5. A spectral estimate We are now going to prove a spectro-statistical
estimate of the Fourier coefficients p;(n) introduced in the first section. The
result will play a crucial réle in our proof of the theorem in much the same
way as Kuznetsov’s corresponding estimate [7, (2.3.2)] does in all known proofs
of his trace formula over the space 2. We shall try to extend the argument
developed in [7, Section 2.3] to our present situation. The somewhat elaborated
discussion given below is to be taken for a preparation for the future extension
of our spectral bound to the large sieve of the Iwaniec type. It will yield a
result stronger than what our proof of the theorem actually requires.
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First we transform the infinite sum in (4.9) in a way different from (4.10).
So, on noting that

T(3(s1—s2) +n+)I(3(s2 —s1) +n+v)

! 1
=I(2n+ 21/)/0 (w(l = w))" Y (u/(1 — u)) 7152 gy,

we have, in (4.9),

el 92n-1 1 .
o= | (- )T /(1 - )R
v=0

oo

L(n+v)T(n+3 +v) ' u
x ;Z:()F(V+ DL(3(s1+82) +n+v— %)(2sm19\/17(1_—u))2 du.

We have used the duplication formula for the I'-function. Also the exchange of
the sum and the integral that we have performed is easy to verify; note that
the relevant condition on s;, s2 is maintained. The sum in the integrand can
be expressed in terms of Gauss’ integral representation of the hypergeometric
function as before. Thus the above is equal to

2n—1 1,1
7wl (5(s1+ s2) — o Jo

X v_% (1 —_ v)%(sl+32)_2<

w(l —u)v
1 - (2sin?)%u(l — u)v

)ndudv.

This gives, in place of (4.11),
(%(81 + 82 — 1))
8rii
1,1
% / / u%(81—82)—1(1 _ u)%(sz——s])—lv—-%(l _ ,v)%(sl+32)—2
o Jo

T'(n) 4p~%u(l — u)v 7
X /(a) T(3(s1+ s2) — 1) (1 — (2sin0)%u(l - u)v) dndudv,  (5.1)

r
B(pvﬁ’ 31,32) =

provided
|Re(s1 —s2)| <2, Re(s1 +32) > 2+ 4o
with a small . The verification of absolute convergence is immediate. The
innermost integral could be expressed in terms of the J 1(81 +e2)=1 (see (2.14)).
2

We now specialize the above discussion by putting

s1=2+41it, s, =2—it (t€R).
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We insert (5.1) into (4.2) and equate the result with (3.6). Further, we put
m = n. Then we get, for any real ¢t and non-zero m € Z[i],

> * loar (m)[
;lpj(m)P\P(t,ﬂj) + 272 /_oo TOT el +ir)|2w(t’r)dr
=14 (xlml)® S [II74S(m, m; )®(t;m, 1). (5.2)
o

Here we have

(t,r) = wAQ2 +it, 2 — it;ir)|T(2 + it)| 72

1 1
®(t;m,l) = —i/ / (1 - u)'“_lv_%
o Jo

L'(n) |Pu(l ~ u)v .
x /(a) r'2-n) ((ﬂ'lm|)2(1 — (2sin)2u(1 — u)v)) dndudv,

where 9 is as before, and 0 < a < %
We multiply both sides of (5.2) by the non-negative factor

exp(—(t/K)?) - exp(~(2t/K)?)

with a large parameter K > 0, and integrate with respect to t over the real
axis. We readily find that this procedure yields the inequality

> lpim)Pe™ < K2+ K|mf2 Y {748 (m, m; ]| P(m, ; K)),
IK<k;<K leZ[4)

10
where the implied constant is absolute, and

Pt 0= [ 2000 (e (= Gl ) )

with

Q(u,K)=Kexp(-(£2(-log v )2)—%Kexp(~(-€f—log u )2)

1—u 1—u

We then observe that the representation (2.13) implies that the Jy factor and
thus P(m,l; K) are absolutely bounded. Hence we have proved

Lemma 11 We have, uniformly in non-zero m € Z[i] and K > 0,

> lps(m)Pe™ < K? + K|m|?. (5.3)
1K<k;<K
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It should be remarked that our argument can be refined at least in two immedi-
ate respects outside the aforementioned possibility of its large sieve extension:
The factor |m|? could be replaced by [m|!*¢ for any € > 0. Also an asymptotic
equality could be proved instead of the inequality. We note that Raghavan and
Sengupta [9] considered a sum that is essential the same as ours, and proved
an asymptotic expression for it. However, it appears to us that their argument
is hard to extend to the large sieve situation.

6. Proof of Theorem We may now finish the proof of our theorem. But
we shall show only salient points, for the reasoning is very much similar to our
third proof of Kuznetsov’s trace formulas over H? that is given in [7, Section
2.6].

First we observe that by virtue of the bound (5.3) we may consider the
case where we have e~ h(r), 6 > 0, instead of h(r) in the statement of the
theorem. That is, we may assume that h(r) is very rapidly decaying as |r| — oo
in the horizontal strip where it is regular. We then put s = 2, s; = s in (3.6)
and (4.16). Equating the results we get, for m,n € Z[i], mn # 0, Res > % +e
with a small € > 0,

KPP e 4 4 i T — 1 — ik
j; sinh I(s —14ix;)I(s — 1 — ik )

0 ir(m)oir(n . )
+ 211'/ lmnlir(KK)(l -f—z')r)PP(S —14+4r)['(s~1-ir)dr

= 71'_121_2811(23 - 1)( mmn + 6m n)

2 — — —_—
+1 Z |{|=*S(m,n; l)/ e Tﬂlr(27rw)f‘(s 14 ir)I'(s — 1 —ir)dr.
@

Here [¢] indicates that the pathis Imr = —% —e&. The shift of path involved here
is to gain absolute convergence throughout in this and subsequent expressions.
We multiply both sides by the factor (v/2)%2~2%, v > 0, and integrate with
respect to s over the line Re s = 2. It is easy to check the absolute convergence,

and by (2.15) we have, for any v > 0,
ol . . . oo . .
Z NJP{ (m)pj (n) szj (v) + 27r/ Uzr (m)air(n) Koir(v)dr

j=1 Slnh7l'f‘~'/j —00 |mn|"‘|€K(1 +’LT)|2
1
= g;((sm n + 6m _n)ve"v
-2
+1 zezz:m {|7“S(m,n; l)/ sinh rﬂzr(zrw)f{z"(v)dr

1#0
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Further, we multiply both sides of this identity by the factor
1 [~
90) = o7 [ €sin(me) Kie(w)h€/2),
720 J_o

and integrate with respect to x over the positive real axis. The absolute con-
vergence is again not hard to check. It should, however, be expedient to note
that the width of the horizontal strip where h{r) is regular becomes relevant
when we check the convergence of the Kloosterman-sum part. By means of
(2.2) we get (1.6), save for the verification of

o o
/ ve Yg(v)dv = 871'_1/ r2h(r)dr.
0 —00
But this is a simple consequence of the well-known Mellin transform of K, (v)
x e~ V. This ends the proof of the theorem.
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Modular Forms and
the Chebotarev Density Theorem, II

V. KuMAR MURTY*

1. Introduction Let 7(x,q¢,a) denote the number of primes less than x
which are congruent to a(modg). The classical Siegel-Walfisz theorem states
that given N > 0, there exists ¢ = ¢(N) > 0 such that

n(z,q,a) = 745(1—q)Li z+ O(zexp(—c logz))

holds uniformly for ¢ < (logz)N.

In trying to generalize this to the non-Abelian context, one encounters
difficulties from possible poles of the Artin L-functions. One of our aims here
is to formulate and prove a non-Abelian version assuming Artin’s conjecture on
the holomorphy of Artin L-functions, and show how it can be used to deduce
results independent of this conjecture. In particular, we present unconditional
analogues of some results of [8].

A second aim of this paper is to apply the above results to modular forms.
As in [8], we employ group theory to put ourself in a situation where Artin’s
conjecture is known. Thus we are able to apply the results mentioned in the
previous paragraph without introducing any hypotheses. In particular, we get
sharper results than those of Serre {11] and Daging Wan [13] on the frequency
with which the Fourier coefficients of a non-CM modular form take a given
value. We also apply our estimates to deduce lower bounds for these Fourier
coefficients which are valid on a set of density one. These make precise the
results stated in [§], §5.

To state the general result, let K be a number field and L a finite Galois
extension of K with group G. Let C be a subset of G stable under conjugation.
For a prime p of K which does not ramify in L, denote by o, the conjugacy class
of Frobenius elements at primes of L dividing p. Denote by m¢(z, L/K) the
number of primes p of K, unramified in L, for which ¢, C C and N qp < .
(When there is no possibility of confusion, we shall simply write w¢c(x) for
mc(x, L/K).) The Chebotarev density theorem tells us that as £ — oo,

) ~ -l—q 1z
mc(z) |G{L

* E.W.R. Steacie Fellow.
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(where vertical bars denote cardinality). Lagarias and Odlyzko [4] have given
an effective version of this. Their result states that for z > exp(10nz(logdr)?),

me(x) = %Li x4+ 0 (%Li Jlﬁ1> +0 (]IC'H.L'exp (—c (l(;g;> 2)) (1.1)

where 3, is a possible real zero near s = 1 of the Dedekind zeta function {z(s)
of L, ng = [L : Q], di is the absolute value of the discriminant of L/@Q and
[|IC]] is the number of conjugacy classes contained in C, and ¢ and the implied
constants are positive, effective and absolute.

It is necessary to define what one means by the exceptional zero £y in this
context. In [12], Lemma 3, it is shown that the Dedekind zeta function (z(s)
has at most one zero in the region

L o<1, < —
- =7 “4logdL'

This zero, if it exists, must be real and simple. It is this possible simple real
zero which is denoted 3; in (1.1).

The estimate (1.1) has been used by Serre [11] and by Murty, Murty and
Saradha [8] to study the distribution of values of Fourier coefficients of modular
forms. More precisely, let f be a cusp form which is not of CM-type, of weight
k > 2 for the congruence subgroup ['g(N). Suppose that f is a normalized
eigenform for the Hecke operators T, (p t N), and the U, (for p|N) and that
f has a Fourier expansion

f(:) — Z an€27rinz.

n>1

Suppose for simplicity that the a, are rational integers and that the weight &
is equal to 2. For a € Z, set ms(x,a) to be the number of primes p such that
p <z and a, = a. Using (1.1), Serre showed that for any € > 0, we have

7i(2,a) < a/(logr)®2 ¢

Daqing Wan [13] improved the exponent in the denominator to 2 —e. We give
a further refinement, namely we show that

mi(z,a) < z(loglogz)®/(logz)’. (1.2)

We do this by relating 7;(2,a) to m7c(z) in an extension where Artin’s con-
jecture is known, and then use our improvement of (1.1). Our method is the
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unconditional analogue of the method of [8] which, contrary to the opinion
expressed in [13, p.253], presents no new serious difficulties. Of course, (1.2) is
still quite far from the expected truth. Lang and Trotter conjecture that

mi(z,a) € Va/logz.

We apply the above estimate (1.2) to deduce lower bounds for the a, and
the a,, which are valid on a set of density one. More precisely, we show that
for any monotone increasing function F' which tends to infinity, the bound

log p
a D r—
o) 2 (loglog p)>F(p)

holds for a set of primes of density 1. Also, for any € > 0, there is a set of n of
density 1 such that

log n
L= > — 2
an =0or |a,| > (Tog log n)+¢

2. Preliminaries Let L/R, G and C be as above. For any character x of
G, set

Y(z,x)= Y x(o7)log(Np).
N ™Mz
tdr

Set also

Ye(@)= Y log(Np).

N Mg
eMeC

fdp
By the usual technique of partial summation, an estimate for ¢¢(z) will also
yield an estimate for m¢(z). If C is a conjugacy class, we have by the orthog-
onality relations

=)= 1g REIE

Here, the sum ranges over the irreducible characters y of G. Thus, it suffices
to estimate each ¥(z, x).

Let x be, as above, an irreducible character of ¢ = Gal(L/K). Denote
by L(s,x) the associated Artin L-function, by f, the (Artin) conductor of x,
and by V, the underlying space of x. For each infinite place v of K, denote
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by \f(l) the dimension of the subspace on which o, acts by £1. (Note that
X, (1) = 0 if v is complex.) Let us set

ay = Z/\’:r(l)’ by = ZX;(l)
where the sum ranges over the real infinite places v of . Let us also set
ey = x(Dra(K)
where ra( ') is (as usual) the number of complex places of K. Finally, let
Ay = d}{(l)NK/Qfx

Set

by

B(s.0) = (x7/20(s/2)) " (xR + 1)) (27 T(E)

and

As,x) = A &(s,x)L(5,X).
Then, we have the functional equation (see for example, [7], Chapter 2)
A(s, x) = WX)A(L = 5,X)
for some complex number W(x) of magnitude 1. Let
8(x) = (x, 1)

be the multiplicity of the trivial representation in . Then (s(s—1))**)A(s, x)
is a meromorphic function.

In the remainder of this section, we shall assume that (s(s— 1) CIA(s, x)
is in fact holomorphic. This is Artin’s holomorphy conjecture.

Under this assumption, we have the Hadamard factorization

A5, %) = (s(s = 1))V exp (ay + As) [ (1 - %) e

We know (for example, from [10], (2.8)) that

Re(B8y) = —Rez %
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and

! !

L L 1 1
TEN+F6X) = > (s—p+ §—ﬁ>

I3

— log A, —2Re®(sx)—2Rec5()(i+ ! )

s—1
Re( 1 ): 0‘—,32 > 0
s=p) |s—opl

for ¢ > 1 and any p = # + iy with 0 < # < 1 we deduce that

_Re—sx)< —-ZRe( )+%logAX

&' , 1 1
+ Re 6—(8, x) + Re é(x) (; + ST)

Since

1

where the sum over p is over any subset of zeros of A(s, x) with 0 < Re p < 1.
JFrom Stirling’s formula,

6/
—(5,x) < x(ng log(|s| + 2).
Hence, for o > 1,

&
—Re sx ) < —ZRe( >+6(X)Re< +L1)

+ 5 log Ay + O(x(U)nx Tog(Js] +2)). (2.1)

Also, if we take 1 < ¢ < 3/2 then & (0/2), & ((0’+ 1)/2), and L (o) —log2 are
negative. Hence,

Redgo:0) = S (e/2) + S (o + 1)/2

!
)n
+ ¢ (%(U)-—log? - X—(%logﬂ'g —X(—Q)‘F—logw<0

Hence, for 1 < o < 3/2,

/

—Re—(0,\) < —ZRe( 1p>+—;~logAX+ 8(x) <%+0—1—> (2.2)

p
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3. Zero-free regions We continue to assume Artin’s holomorphy conjec-
ture. We shall prove the following.

Proposition 3.1 Assume Artin’s conjecture for L/ K and let x be a character
which does not contain the trivial character. Set r = (x,x). Then, there is an
absolute constant ¢ > 0 such that L(s,x) has at most 3(r + 1) zeros (counting
multiplicities) in the region

C C
—_—— <L g <1, t < —m—m—————.
x(1)log 4y =~ 1< x(1)log Ay

Proof We consider the function
H(s,x)=L(s,(1+x)® (1 +X))
Expanding the product, we see that

(aX) CI\ ) (S,X)L(S,)Z)L(S,X@))Z).

Then, for ¢ > 1, we have

H' L L ; L
0 S __H—(U’X) = - (f(f’»X) + f(a’i)) - %(0’) - f(O’,X ®)2)

Now using (2.1) and (2.2), and the fact that if p is a zero of L(s,x) then p is
a zero of L(s,x), we deduce that for 1 < ¢ < 3/2,

1
2 Re ! < r+1+clr+ logdK+ log Ay += logA + 5 log Axex
P o—p o—1

where the sum on the left is over zeros of L(s, x) in the stated region. It is
clear from the definition that

1 1 1 1
err + §1ogdK + §logAX + -2—logA>z + -élogAX@X < cax(1) log Ay

for some constant ¢ > 0. Now choose

€3

c=14 —7—
x(1)log A,

with ¢z > ¢, and assume that L(s, x) has more than 1 5(r+1) zeros in the given
rectangle. Let »' denote the greatest integer < g(r +1). Then

c+cs3 r+1
7 <
{(c+e3)?+c? 3

2(r' + 1) + cs.
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Now choosing ¢3 and ¢ sufficiently small we get a contradiction.

Corollary 3.2 If x is irreducible, then L(s,x) has at most one zero in the

region
¢

l-——<o<1, [HL
Wioga, <75 s

c
X(l)logAx'

Proof We apply Proposition 3.1 and observe that r = 1.

Corollary 3.3 Ifxi and x2 are two distinct irreducible characters, then there
15 an absolute constant ¢ > 0 such that L(s,x1)L(s, x2) has at most one zero
in the region

1 <<l
x(logA = =7

|t| < _c
x(1)log A
where x(1) = max(x1(1), x2(1)) and A = max(4,,,Ay,).

Proof We apply Proposition 3.1 to L(s, x1 + x2) and observe that » = 2.

Proposition 3.4 Assume Artin’s conjecture for L/ K and set
A=max A, d =max x(1)

and
L(s) = H L(s, x)

where the mazimum and product range over all the irreducible characters of
Gal(L/K). Then, there is a ¢ > 0 such that L(s) has at most one zero in the
region
¢ c
— <o <1, Jt|<——n.
=7 It < dlog A

Proof This follows immediately from Corollary 3.3.

Remark 3.5 In[4], pp. 452-453, the remark is made that if Artin’s conjecture
is assumed, one should be able to establish a zero-free region with A, in place
of dr. However, the exact form is left unclear. In particular, note that in the
above, it is A;{((l) which enters.

Remark 3.6 It is possible that the full Artin conjecture is not needed to
prove the Propositions above and that a region free of poles near s = 1 would
suffice.
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Notice that Proposition 3.4 does not show that the exceptional zero, if it exists,
is real, or that it comes from an Abelian character. It is possible to prove this
if we narrow the zero-free region somewhat.

Proposition 3.7  Assume Artin’s conjecture for L/K and let x be an ir-
reducible characler of degree larger than 1. Then, there is a constant ¢ > 0
(effective and absolute) such that L(s,x) does not vanish in the region

C

1—
x(1)%(log Ay + nx log([t| + 2))

<o<l

If x(1) = 1, then it has at most one zero in this region. Such a zero is neces-
sarily real and simple.

Proof Let £ be a prime so that K does not contain any ¢-th roots of unity.
(There exists such a prime which is O(logdg).) Denote by x; the character
XQ x’:yc, where X ycr is the complex character giving the action of Gal(K/K)
on £-th roots of unity. Let ¢ be an irreducible constituent of x ® x¥ which is not
the identity character or x. (This is possible as x(1) > 1.) Following an idea
of Hoffstein and Ramakrishnan [3, p. 297], we consider the function

H(s,x) = L(s,(1+ ¢+ x,) @ (L + ¢+ X—v))

with 5 yet to be specified. Since (¢® 1, %) = (¢, x@%) > land ($@x,x) > 1,
we can write

L(s, ¢ ® x—y)L(s, o Xy) = L(s+1iv,x)L(s — iy, %) 1(s + iy)[2(s — #7)

with I(s) = I;(s + iy)Ia(s — i7) entire. Moreover, I(s) is real for real s.
Expanding the product for H(s, x), we see that

H(s,x) = L(s+iy, x)* L(s—iv, X)*Cx (5)L(s, x®X) L(s, 9©¢) L(s, ) L(s, #) I(5)-
Now let p = 8+ iy be a zero of L(s,x) with 0 < 8 < 1,4 > 0. Then we get

foro>1

/

! L
0< -—%(a,x) ==2 (Lf(a+i7,x) + -L—(U - i%i’))

k(o) - Lioxon - Lo609
—C—K(O')_L(O')X®X) L(U’¢®¢)

! - I .
- (Zeo+Les) - Forin
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Now applying (2.1) and (2.2), we deduce that

3 s 5 .
< — .
py B +c1(x(1)* log Ay + x(1)nk log(|7| + 2))

Now choosing
C2
" X(D(log A, + nx log(1h1 + 2))
for a sufficiently small ¢ > 0 and ¢; > 0 gives the desired zero-free region.
Finally, the case of y(1) = 1 is proved by the classical method. (See, for

example, [6], Proposition 3.4 or [13], Proposition 3.4.) This completes the
proof of the Proposition.

c=1

Proposition 3.8 Assume Artin’s conjecture for L/ K and set
d = max x(1)
and as before, set
A =max 4,.
Then, there is a ¢ > 0 such that {z(s) has at most one zero in the region

c

1- ‘
d3(log A + ng log(|t| + 2))

<o <L

This zero, 31 say, is simple, real and belongs to a character x, which is Abelian
and real.

Remark 3.9 As the proof will show, we can broaden the region slightly to

C
- < 1
V- teBp S ° <

where ‘
B(t) = max, (A, (Jt| + 2)»F )",

Proof Let M be the maximal Abelian extension of K contained in L. If {1 (s)
vanishes in the above region, then by Proposition 3.7, so does (as(s). Hence, it
suffices to prove the result for L/K Abelian. But this is well-known. (See for
example, [6], Proposition 3.4 or [13], Proposition 3.4.)

4. The Chebotarev Density Theorem Let us set

o
log M = log M(L/K) = R-;logdK +2{ ) logp+log(nr/nk)}.
PldL/K
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The main result of this section is the following.

Theorem 4.1 Assume Artin’s conjecture for L/ K and suppose that
d*ng logM < log.

Let x1 be as in Proposition 3.8 and let C' be a conjugacy class. Then

o= Cl. . Cl
we(z) = |G|L1.1: el

+ 0 <|C|%71K$(log eM)? exp (—c’(log z)/ (d3/2 d3(log A)? + ng logw)))

x1(C)Li (%)

Remark 4.2 It is instructive to compare this with the estimate (1.1) of [4].
The condition on 2 in (1.1) is approximately that

logz > n3(log M)? = n3|G(log M)2.
On the other hand, the condition in Theorem 4.1 is satisfied if
logz > ng|G|*log M.

The error term of (1.1) depends only on the number of conjugacy classes in C
while the result above depends on the size of C'. Since

dB(log A)® +ngloge < ng(ngd®(logM)? +logz),

the above result is nontrivial provided

d*ng (log M) = o(log z).
On the other hand, for (1.1) to be nontrivial, one needs

nr = ni|G| = o(log x).
If G is Abelian, then (1.1) is valid and nontrivial provided

logz > n¥|G*(log M)? and nk|G| = o(log z)

while Theorem 4.1 is valid and nontrivial provided

ng log M = o(log ).
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If G has an Abelian normal subgroup A, then Theorem 4.1 is valid and non-
trivial provided

nk[G : A]*(log M) = o(log z).

Example 4.3 Suppose G = Gal(L/K) is the semidirect product of an Abe-
lian normal subgroup A and a subgroup H. Assume Artin’s conjecture is
true for the characters of H. Every irreducible character of G is of the form
IndS"(w ® p) where J 2 A and ¢ is a one dimensional character of J and p
is a character of J/A (viewed as a character of J by the natural projection
J — J/A.) We may write J as the semidirect product AH;, where H; is a
subgroup of H. Now the assumption of Artin’s conjecture for H implies that
the L-functions associated to characters of H; are also analytic. (Indeed, if x’
is a character of Hy, then

L(s,x') = L(s,Indfj x")

and the right hand side is analytic by assumption.) If we assume in addition
that Artin’s conjecture is true for the one-dimensional twists of characters of
H, then Artin’s conjecture holds for G. Hence, if C is a conjugacy class of G,
then

me(z) = :%:Li r - %Xl(C)Li (zP1)

+0 (|C’t%nKa: exp (—c’(log x)/ (d3/2 d3(log A)? + nk loga:)) (log :c.M)Q)

provided
logz > dinglog M.

Note that d < |H]. On the other hand, if every conjugacy class in C contains
an element of A, then we can improve this estimate. This will be seen in
Theorem 4.4 and Theorem 4.6. We shall return to the situation considered in
this example when we briefly look at the Fourier coefficients of CM modular
forms.

Now we begin the proof of Theorem 4.1. Under the assumption of Artin’s
holomorphy conjecture, one can derive the following explicit formula using
standard methods. For any 2 < T < z,

zrlogz

log z
T (d

T

b -0 + Y L« og 4,) + 2

[vi<T

ngx(1)log T

1 L
+ x(1)log x(m logdp + nKxé)
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where p = 8 + iy runs over the zeros of L(s,x) with 0 < 8 < 1, |y| < T. (For
the details, see [5, Proposition 3.3] or [4], §7.)

Set N(t,x) to be the number of p with |y —¢| < 1. In [5, Lemma 4] and
[4, Lemma 5.4], it is shown that under the assumption of Artin’s conjecture,

N(t,x) < logAy + ngx(1)log(|t| + 2).
It follows that
1 Ny,
Z - K Z-—(—J-—X-)- < (log Ay)(log T) + x(1)nk (log T)>.
<t ? jer

By the zero-free region of the previous section (Proposition 3.8), we have

B
P(z,x) — 6(x)r + 6(x)%7 < 27 (log Ay + nkxx(1)logT)log T

zlogx

+ 2882 log 4, + maex(Vlog T) 4 x(1(Iog ) (o

|G

logdy +n K.’L‘%)
where o7 = 1 — ¢/d3(log A + nk logT), d is the maximum of the character
degrees, 3, is the possible exceptional zero of Proposition 3.8, and

1 ifX:X1

) = 0 otherwise.

Recall that we have set

1
log M = log M(L/K) = n—K-logdK +2{ > logp+log(nr/nk)}
pldrsx

and that from [8], Proposition 2.5, we have the estimate
logA4, < x(1)ng logM.

Using this, we have

b |2
2 [¥ 0 = 6002 + )5 | < 2 g (log TMYG]
1
X
2 e )2 1
2 L8] 101105 TM)? + |Gl log 2)? 2 + log M)

Then we choose

logT = { d*(log.A)? +4c2%iloga: - (dlog.A)} [2dng.
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(Recall that d is the maximum of the character degrees and log A is the maxi-
mum of log A,..) The condition T > 2 is satisfied provided

d*nglogM < logz.

With this choice of T', we have

2

X

2
< %% (logzM)*|G|.

. zh
Y, x) —6(x)e + dx}"éf

Then we have

e, , el
rERel (C)ﬁ

IC’I 2P
= {525 (4120 - d02 + 05 )

Ye(x) -

Now applying the Cauchy-Schwarz inequality, we deduce that the right hand
side 1s

81 2\ 2
",x)—é(x)wﬂ(x)wﬂ—‘ ) .
1

<jq (S C)')%(x

Using the above estimates, we see that this is
(€] (lG'I
IGI \IC]
< |C|Pngzexp (—-clog z/ (d3/2 d3(log A)? + ng log a:)) (log zM)?.

L = ) 27 ng (log 2 M)?|G|?

Now using partial summation, we deduce the statement of the Theorem.

We shall now discuss some variants of Theorem 4.1. In the following, if H is
a subgroup of G = Gal(L/K), we shall write By and x g for the corresponding
exceptional zero and exceptional character (respectively). Moreover, we define
TH by

2dpng|Gllog Ty = |H|{ d3 lOgAH)2+4CQ ||gl| logx——dH(log.AH)}

where dy is the maximum of the character degrees of H and

log Ay = maxgerer(a) log As-
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Now set

-1
ocg=1- c{d%(logAH + I‘ffllnh logTH)} )
If C is a conjugacy class of G we denote by C'yr = Cg(h) the conjugacy class
in H of any element h € H NC. Also, if D is a union of conjugacy classes of
G, we set
xu(D)= > |C

cCcD

xH(CH)

where the sum is over the conjugacy classes C' contained in D. As a group-
theoretic quantity, yg(D) depends on the choice of the elements h. However,
the existence of Sy implies that xg(D) is well-defined.

Theorem 4.4 Let D be a union of conjugacy classes in G, and H a subgroup
of G satisfying

(i) Artin’s conjecture is true for the irreducible characters of H

(i) H intersects nontrivially every class in D.

Suppose
G,
logz > dHnK}H| log M.
Then
Tp(x) = -lﬂlLi z— XH(D)Li (xPH)
G| G|
o .
H Z ng (log tMpg)
(ogu ICH|

Proof As in Proposition 3.9 of [8], we find that

D D
mp(z) = }G:L ie- IC(?I) (2°#) + Ey + E»
where c
E, < <max‘icgll>(n;{a:%+n;<log/\/lx)
and

|H| |C| 1
1G| Z lCHl2

C‘CD
ICH|L T+ I H‘XH CH)LI (L‘ﬁH )

X
|H| |H|

71'C'H(z)
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Now applying the Cauchy-Schwarz inequality, we see that

]
< (

IC}?
Z |CH|)

1 Crl.. |CH| . Bh
X (Z |C_H||7rcH(w) - %Ll z+ Tﬁl{{l—XH(CH)Ll z” |2)

¢cCD

=

Using (a small variant of) the previous result, we deduce that

LIS AN T
B < (ZD ICHI) (27 ooty

C|? : 9
= (Z |%P_II—|) 2’ ng(logaMpg)”.

Corollary 4.5 Under the same hypotheses as above

1D, xu(D)
—Liz—-
|G| |G|

0 (wﬁ (1) "““”“"“MH)Z)) |

This follows from the observation that

cE ¢ 6]
2 iGul < TH] 2 19 = P

CcCcD CCD

Li (2#)

mp(x) =

Theorem 4.6 Let D be a nonempty union of conjugacy classes in G and
let H be a normal subgroup of G such that Artin’s conjecture holds for the
characters of G/H and HD C D. Let D be the image of D in G/H. If

dg/HnK(log M)? < logz
then

_ bl ]
mp(x) = l—C—;—ILl Tel

+0 (:7{—: nKa:exp< ¢ (log 2)'/? /(dz//an%? )(logx./\/i)z) :

e Xe (D)L &Porn
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Here,
de/g = maXyenrc/H) ¥(1).

Proof We note that D is a union of conjugacy classes in G/H and

IDIIH| . |H] .
WD(.L’) = ——l—éT—Ll Xz — [_GTXG/H(D)LI l’ﬁG/H

+ O(lDﬁnK.L(lOg JfMg/H)z
X exp (—c’(IOg z)/ (dfng(dg sr(log A m)? + n log 2)*/2 ))

provided
logz > dg gnk log M.

Now we observe that

1
o) = 7p(z) + O (;I-log clL)
and that

log Ag/pr = maXgerr(g/aylog Ay < dg/ank log Mga

G\ ?
, < — .
dojm < (IHI

From these estimates, it follows that

and

% plog Ag/g)? + nk logz < ng{dy gnk(log Ma)® +log z}.

The Theorem follows when we use the lower bound on log  given in the state-
ment.

5. Applications We apply this estimate to the Fourier coefficients of mod-
ular forms. Fix an f as in the introduction. Our aim is to prove the following
estimate.

Theorem 5.1 We have
z(loglog z)*

‘/T‘f(l’,a) << (10g$)2
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Remark 5.2 An even sharper form of the above is valid in the case that f
has complex multiplication (CM). Recall that f is said to have CM if there is a
Dirichlet character y such that f = f @ y. Equivalently, f arises from a Hecke
character of an imaginary quadratic field. In this case, one can in fact prove
(using the estimate given in Example 4.3) that for any A > 0,

z
’R'f(l‘)a) << W

Thus in the CM case, the situation is very analogous to the classical Siegel-
Walfisz theorem.

For the relation between m¢(x, a) and the Chebotarev density theorem, we
refer the reader to [8], Introduction and §4 or to {11]. We find that for each
prime ¢ (sufficiently large), there is an extension L,/@ unramified outside {N
with group

G = {g € GLa(Fy) : detg € (F)* 7'},

and a conjugacy set
C=C,={9geG:trg=ua}

so that
mp(x,a) < 7mele).

As in [8], §4, let y > 0 be arbitrary and c; > 0 sufficiently small. Let u satisfy
y>u> yexp(—ei(logy)?)

and set I = [y, y + u]. For a prime p, set

wp = ag —4p.
Set
mp(®,a;8) = #{p <z :ap = a and ¢ splits in Q(wp)}.

Then

domp(eat) = Ym0

el aps:a
where

7 (I) = #{€ € I : £ splits in Q(wp)}.

Let us set

mp(x) = #{¢ < & : € splits in Q(wp)}.
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We have

S (D) = srDre,a) + 3 (m(D) - 57(D)

p<x pS=
a;,:a a,,:a

where 7(7) is the number of primes in the interval I. Now

> (mp) - —n(f)) < mp(za)3 (Y Imp(]) - —w( )H)E.

PS_I p<z
We have ,
1 a? —4n
> -3 < 2R3 (S
ap(_xa n<.t el

Expanding the inner sum, we see that the right side is equal to

_71'([)1 ¥ - Z 3 <“£'1"L,j">

41#8 nlr
£y, L0€1

Using the Polya-Vinogradov estimate on the second sum, we see that this is
1 5
77Dz + O(y”logy).

Hence,

Z(wp I)——w(f)) < mp(e,a)in(l)zet,

Putting all this together, it follows that

11
Ti(z,0) K I?glxnf(x,a;e) +0 (M_f‘_)z_z_) ]

m(I)z
i From this it follows easily that if

. z(loglog z)?
(z,a;0) <€ (log2)?

then the same estimate holds for 7 (x, a).
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Taking an £ € I, we estimate 7;(x,a;€) as follows. Let B denote the
intersection of the upper triangular matrices in GLo(F,) with G, and let K,
denote the subfield of L, fixed by B. Then

(<K Q) < ¢

By choice of ¢, every conjugacy class in C intersects B. Choose a maximal set
I’ of elements in B of trace a which are not conjugate in G. Then

¢ =UCs(y)

where the union runs over elements ¥ € T' and Cg(%y) denotes the conjugacy
class of ¥ in G. Set
Cp =UCB(7).
Then
me(x, Le/Q) = meg(e, Le/K¢) + O(log N + 27).

Let A be the unipotent elements of B. Then ACg C Cg. Let M, denote the
subfield of L, fixed by A. Then M;/K, is Abelian, and in particular, Artin’s
conjecture holds. Applying Theorem 4.6, we deduce that if

log z > caf(log £N)?

then

megla, Lo/ Ky) € %Li z 4+ 0 (€3/2x exp (—c’ lo%'a:) (log xZN)2> .

In the above, we used the trivial bound 3 < 1. Now choose

y = cs(log z)/(loglog z)*
for ¢4 sufficiently large and a sufficiently small absolute constant ¢; > 0. Then

z(loglog z)* (m(log x)3/? )

Ti(z,a) € (log2)? (loglog 2)° (log £N)? exp(—cs log log z)

and this is seen to be
z(loglog z)?

(log z)?

by taking cs sufficiently small. This proves the main result.

Tz, a) <K
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By summing over a, we can deduce a lower bound for the a, valid on a set
of primes of density 1.
Proposition 5.3 Let g be a monotone increasing function satisfying g(z) —
0 as & — oo, Then
lap| > (logp)/(loglogp)*g(p)
for a set of primes p of density 1.

Proof We see that
log p
#{ <zifal < ———}
P 2] < Tiog log p)?9(p)

is majorized by

Z 7'rf(l‘v a)

lal<log z/((loglog x)2g(x))

and by Theorem 5.1, this is

log = z(loglogz)? z
(loglogx)?g(z) (logz)*  g(x)loge

= o(7(2))

and this proves the result.

We now combine this with an elementary sieve argument to deduce a
bound on the a,. A result of this sort was stated in [8], Theorem 5.4, with an
unspecified constant in the exponent. The result here makes this constant and
the bound explicit.

Theorem 5.4 The set

log n
{riom=00r ol > i

has density 1.
Proof Let D denote the set of all prime powers p™ satisfying

log p™

m| >
lap | el (loglogpm)3+‘

By Proposition 5.3, the set of primes p for which this bound holds has density
1. For m = 2,4, the same result can be proved by considering the symmetric
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power representations. For other values of m an even stronger bound holds
from [9]. Given n let us factor it as n = nyns where ns is divisible only by

prime powers p™ in D and ny is divisible only by prime powers which are not
in D. Then if a, # 0,

log p™
ol 2 bl 2 1] oo

P |Ing
p™mED

and this is seen to imply

log s

nl 2 —.
fanl 2 (loglog n)3+¢

Now the number of primes < & which are in the complement of D satisfy the

estimate
z

(log z)(log log z)1+¢’

Hence, in the notation introduced above, it follows that

1

n

is convergent. (It is to ensure the convergence of this series that the lower
bound for a, is weaker than that for a, given in Proposition 5.3 by a factor of
loglogn.) We deduce from this that

{n:n9 > n/logn}
is a set of density 1. Indeed, for any y < «, we have

#{n<zim < nflogn) < y+ 3. 1< y+ O o/n

y<n<r y<n<x
ng<n/(logn) ny>logy

Now, if we choose, say y — co and y = o(z) we see that the above quantity is
o(z). Hence, for n which are not in this sequence of density zero, we have

logn

al > —
lan 2 (log log n)3+e

This completes the proof.
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Congruences between Modular Forms
M. RAM MURTY*

1. Introduction Recently, Goldfeld and Hoffstein [4] have shown, using the
theory of L-functions that if f and g are two holomorphic Hecke newforms
of weight k& and squarefree levels Ny, Ny respectively, then there is an n =
O(Nlog N), with N = lem(Ny, Ny) so that

as(n) # ag(n).

(Here, ag(n) denotes the n-th Fourier coefficient in the Fourier expansion of
f at ¢00.) In other words, there is a constant ¢ so that the first cNlog NV
Fourier coefficients determine the newform. They obtain an analogous result
if the weights are distinct. Assuming the generalized Riemann hypothesis for
the Rankin-Selberg L-functions attached to these eigenforms, they deduce that
the bound above can be improved to O((log N)?(log log N)*).

We will show that these results can be established without the use of L-
functions. Our approach leads to sharper results and is applicable in the wider
context of two arbitrary cusp forms of any weight and level. In fact, we will
prove a more general and sharper:

Theorem 1 Let f and g be two distinct holomorphic modular forms of weight
k and levels N1 and Ny respectively. Let N = lecm(Ny, N2). Then, for some

k 1

< z

n_12N”(1+p)
pIN

we must have ag(n) # ag(n). (Here, the product is over primes p dividing N.)

Remark Note that we do not assume that f and g are Hecke eigenforms
nor that they are of squarefree levels as in the Goldfeld-Hoffstein [4] paper.
Moreover, let us observe that if v(N) denotes the number of prime factors of
N, and p; denotes the i-th prime, then

H(H%)S 11 (H%)s II (1——1—_)_1<<loglogN

pIN 1<i<y(N) 1<i<y(N) ‘

* Research partially supported by NSERC, FCAR and CICMA.
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which is a sharper bound than the one given in [4, p. 387].

Proof Let ¢ = f — g, and suppose as(n) = a4(n) for n < M. Then, ¢ has a
zero of order > M at ico. If A denotes Ramanujan’s cusp form, then ¢!2/A¥
is of weight zero and hence a meromorphic function on the compact Riemann
surface Xo(N). Since A does not vanish on the upper half-plane, and has a
simple zero at oo, the number of zeroes of ¢, which is at least 12M — k, is
equal to the number of poles, which cannot exceed k times the index of T'o(N)
in I'(1) minus one (to account for ico which already contributed to the zero
count). The index of To(N) in T'(1) is equal to

NHV(H )

The result is now immediate.

We can make a few remarks. The first is that the method can be applied
to any discrete subgroup contained in I'(1) to get an analogous result. One can
also adapt it to deal with f and g of different weights.

The proof of Theorem 1 can be modified to handle different weights. In-
deed, if
an(f) = an(g)

for all n < M, then
¢ — (fk2 _gk1)12/Ak1k2

is a function on X¢(N). The order of the zero at ico is > 12M — kjka. The
number of poles, on the other hand is < k3 ko([['(1) : To(N)]—1) by an analogous
argument as before.

Let us introduce the following notation. Suppose

f(Z Z an(f)e27rmz

n=1

is the Fourier expansion of f at i00. Then, define

ordeo(f) = min{n : a,(f) # 0}.

We have therefore proved:

Theorem 2 If f and g are holomorphic modular forms such that

klkz

ordoo(f — g) > ([F(l) Lo(N)])
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then f =g.

The result which we state below will be proved by a different method
in Section 5 as an application of the Riemann-Roch theorem and is a small
improvement of Theorem 2.

Theorem 3 Suppose that f and g are two holomorphic cusp forms of weights
k1 and ko and levels N1 and Ny respectively. If

ordeo (f = 9) > kika(p — 1),

where u is the genus of Xo(N) and N = lem(Ny, N2), then f =g.
Let us note that the genus u satisfies the inequality

and thus, the bound of Theorem 3 is comparable to the one of Theorem 1.

In case that f and g are normalized newforms of distinct weights k; and
ko and levels Ny and N, respectively, we can in fact do better and derive an
estimate superior to the conditional estimate of Goldfeld and Hoffstein [4, p.
386).

Theorem 4 Let f and g be two holomorphic Hecke newforms of distinct
weights k1 and ko on To(N1) and T'o(Nz) respectively. Then, there is an n <
4(log N)? with N = lcm(Ny, N3) so that

an(f) # an(9)-

Proof We can view f and g as cusp forms on T'o(N). Let us first note that
there is a p < 2log N which is coprime to N for otherwise N would be divisible
by all the primes < 2log N and hence by their product. By a classical estimate
of Chebycheff, this product is

H p=exp( Z logp>>N,

p<2log N p<2log N
which is a contradiction. Thus, fixing such a prime p, and observing that
ap(f) = ap(f) —p" 7}

and
ap2(g) = a2(g) — p™!
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we deduce that k; = k,. Noting that p? < 4log® N, we have a contradiction.

If we view Theorems 1, 2 and 3 as statements at the “infinite prime”
then it is natural to ask for analogous results at the “finite primes”. That
is, if we have a congruence between coefficients of modular forms (mod p) up
to a certain natural number, can we conclude that the coeflicients are always
congruent? In the case the two forms have equal weight, such a result was
first established by Sturm [12]. Sturm’s proof is sketchy in some places and
therefore, for the sake of clarity of exposition and emphasis with the analogy
above, we give the complete proof in Sections 2, 3 and 4. Sturm’s argument
however cannot be easily modified to handle different weights. In Section 5,
we therefore take a different approach through the Riemann-Roch theorem.
This has the merit of being conceptually simple and at the same time working
(mod p) (for p not dividing N = lem(Nj, N2), however) thanks to the algebro-
geometric generalization of the Riemann-Roch theorem. Recently, K. Ono
[7] applied the theorem of Sturm in investigating the parity of the partition
function.

2. Preliminaries In our paper [8], we indicated how the celebrated ABC
conjecture leads naturally to the problem of congruences between modular
forms. We will not discuss this connection here, but refer the reader to the
forthcoming paper [8] for a detailed derivation. The purpose of this paper is
to determine the (finite) amount of calculation necessary in order to establish
a congruence between two modular forms.

More precisely, let us fix an algebraic number field F' with ring of integers
OpF. Fix a prime ideal p of Op and for a formal power series

[o o]
s = ch(n)qk , cs(n) € Op,
n=0

define
ordp(s) = min{n : ptecs(n)}

with the convention that ordp(s) = oo if p|cs(n) for all n. Recall that k[[q]] with
k = Op/p is a discrete valuation ring. In particular, this implies the following.

Notice that if
F=Y c(nyg
n>0

9= Z cg(n)q"”
n>0

then

cfg(n) = Z cf(d)eq (),

i+j=n
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so that, if ord,(f) = ny < oo and ordy(g) = ny < oo, then from the above
formula, we see

crg(ny +ng) = cp(ny)eg(ng) mod p
# 0 mod p.

We also note that cfg(n) =0 mod p if n < ny + ny. Hence,

ordy(fg) = ordy(f) + ordy(g)

when each of the terms on the right hand side is finite. By the convention made
above, the equality also holds if either one of ordy(f) or ordy(g) is infinity.

For each positive integer N, let

r(zxr):{(z 3) € SLy(Z) : (‘Z 3) = (é ‘1)> modN}

and fix I', a subgroup of I'(1) containing I'(N). As usual, §) will denote the
upper half-plane, k& will be a positive integer and we will consider functions

f:9-C

satisfying certain conditions. M (T") will denote the C-vector space of modular
forms of weight k for T'. To be precise, let us define for each v € GL} (R), the

function
az+b

cz+d

(2

is a matrix of GL2(R) of positive determinant. Then My (T') consists of holo-
morphic functions of the extended upper half-plane:

f 5 =1huQuUicc} —C
satisfying f|y = f forally € T.

1 N
(6 T)er

such an f € My(T') has a Fourier expansion of the following type:

= Y as(n)e(nz)
nen;?‘z

(flm(z) = f( )(cz +d)"*(ad - be)*/?

where

Since
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where e(z) = €2™®, If R is a subring of C, we denote by My(T, R) those forms
of My (T") whose Fourier coefficients lie in R. That is, ag(n) € R for all n.

Our purpose now is to explain in some detail a fundamental result of Sturm
[12] regarding congruences between modular forms. To this end, let us fix as
before an algebraic number field F’ and let Op be the ring of integers of F'. Let
p be a prime ideal of Op. We will explain the following:

Theorem 5 (Sturm) Let f,g € My(T',OF). Suppose ordp(f — g) > k[['(1)
T/12. Then f = g mod p with I’ a congruence subgroup.

Notice that the bound does not depend on p.

3. Sturm’s theorem: the level one case To prove the theorem, we first
consider the level one case. That is, N = 1. Recall that Ramanujan’s cusp

form
oo

Az) = Z (n)e(nz) € My2(I'(1),Z)

and can be written in terms of the standard Eisenstein series:

1

L m3_ 2
with o
E4(z) =1+240 Z o3(n)e(nz),
n=1
Eg(z) =1-1504)  o5(n)e(nz)
n=l
and
ak(n) = Z dk.
din
d>0
Also, the modular function j(z) is
i(2) = B}/A.

We reproduce below a result that is well-known for M (T'(1)). We adapt it to
the case My(T'(1), Op).

Proposition 6 Let ® € My9,(T'(1),OF), satisfying ordy(®) > k. Then

®/A* € plj)
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is a polynomial in j of degree at most k, all of whose coefficients are divisible
by p.

Remark This fact is stated without proof in [12]. It is more or less evident
from the fact that any modular function with only a pole at infinity must be
a polynomial in j. However, the divisibility of the coefficients is not so clear.
One can see this by comparing g-expansions. For the sake of completeness, we
give a proof that assumes minimal background.

Proof We induct on k. For k = 1, ® has weight 12 and so we can write it as
an Op-linear combination of Ej and A, as is easily checked. Dividing by A
gives the result. Since ord,®/A > 0, we observe that writing

/A = Z c(n)e(nz),

n>-1

we have ¢(n) € Op and plc(n) if n < 0.
For general k, let us find ¢ and j so that
12k = 4i + 6.
Then for some ¢ € Op, o
® - cELE]
is a cusp form of weight 12k.

Thus, we can write o
®=cE,El+Af

with fi € Miagk-1)(T'(1), OF). Dividing by A* yields

/A% = cELEL/AF + f/0% L
By induction hypothesis,

fi/ART € plf].

Noting that 47 4+ 65 = 12k implies that ¢ = 0 mod 3 and j = 0 mod 2 we can
write ¢ = 3ip , 7 = 2jg¢ so that

ELE}/A* = (E}/A)°(E§/AY°
and Ej/A = j, E3/A = j—1728. This completes the proof of the proposition.

We can now prove the theorem in the level one case. Let ¢ = f —g. Then,
ordy(¢!?) > k implies

¢ /A% = 3 c(n)e(nz)

n>—k
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with ¢(n) € Op and p|c(n) if n < 0. By the proposition, $12/A* ¢ p[j] is a
polynomial in j of degree at most k. Thus, $12 € A¥p[j] implies ordy¢'? = co
so that ordy¢ = 00, as desired.

4. Sturm’s theorem: the general level case = We begin by discussing
some preliminaries.

Let I" contain I'(N). We want to reduce the proof of the Theorem to the
level one case by constructing a map:

T: Mlzk(F(N), OF)_’MUk(F(l)’ OF)

such that
ord,(T(#)) = ordy(@).

Theorem 3.52 of Shimura [10, p. 85] assures us that the space S(I'(V)),
the space of cups forms of weight k for ['(V} has a basis of cusp forms whose
Fourier coefficients at ico are rational integers, provided k > 2. This means
that any element of Si(I'(V), F') has the bounded denominator property. That
is, given an element f € Sp(T'(N), F), there is an element A € F so that
Af € Si(T(N),OF).

By the theory of Eisenstein series, we conclude that My (I'(NV)) has a basis
whose Fourier coefficients are rational over Q({n) where (v denotes a primitive
N-th root of unity. (See also Theorems 6.6 and 6.9 of Shimura [10, pp. 136-
140]).

Now we can prove the theorem in the general case. As in [12, p. 276), let
¢ = f — g. Our aim is to show that under the hypotheses of the Theorem,
ordy(@) = oo. Thus, replacing ¢ by $'? if necessary, we may suppose 12|k.
Then, #A~*/12 is a modular function of level N. Since I'(N) is a normal
subgroup of I'(1), we note that for any v € I'(1),

¢ly € My (T(N) , F((w))-

By what we have said in the previous paragraph, ¢|y has bounded denomina-
tors. Now let K be the Hilbert class field of F({x). Then pOg is a principal
ideal in Ok . Let p be a prime ideal of O dividing pO.

For every v € T'(1), we can clearly find A(y) € K* such that ord, A()(¢|v)
is finite, simply by dividing by a suitable power of . Moreover, by the Chinese
remainder theorem, we can arrange

A()(¢l) € Mp(T'(N) , Ok)
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Now consider the “norm function from I'(N) to ['(1)”, namely,

o= [ Am)(8ln)

=2

where 1 = v, 72, ..., ¥m is a set of coset representatives of I'(N) in I'(1)
Note that
® € M, (T(1))

because if ¢ € T'(1),

m

2o = (H A(%-))
i=2

and 710 , Y20 , ... Ym0 is again a set of coset representatives of I'(N'} in I'(1)
so that ®loc = ®. Note also that

(Blvio)
1

i=

ord,(®) > ordy¢ = ordpd > km/12.

By the level one cases we deduce that ord,® = 0. Thus,

ord,¢ + Z ordg,(A(7i)¢lv1:) = o0

=2

Since ord,(A(v:)¢lv:) < oo for i = 2,...,m, we conclude that ord,¢ = oo.
Hence ord,¢ = oo. This completes the proof.

5. An application of the Riemann-Roch theorem

Theorem 7 Suppose that f and g are holomorphic cusp forms on T'o(N),
of weight k and levels Ny, Ny respectively. Let N be the lem of N1 and Ns.
Suppose that

k
ordeo(f ~9) > 5(2u = 1)
where p is the genus of Xo(N). Then f = g.

Proof If f # g, then k is even since there are no non-zero odd weight forms.
w = (f — g)(d2)*/? is a holomorphic differential k/2-form on Xo(N). Its de-
gree is (k/2)(2u — 2). On the other hand, the hypothesis means that at ioo,
ord;eo(w) > (k/2)(2u — 1) — (k/2) where the extra k/2 comes from (dz)*/2.
Thus, (see for example, Shimura [10, Prop. 2.16, p. 39])

k

(o1~ 2) = deg(w) > ordio() > H2u-1) - &,



318 M.R. Murty

which is a contradiction.

Proof of Theorem 8 It is now clear that Theorem 3 can be proved in an
exactly similar manner. Indeed, as before, let us consider the differential (f*2 —
g*1)(dz)**2/2 and proceed as in the previous proof.

Theorem 8 Suppose f and g are cusp forms of even weight k and level N
with coefficients lying in the ring of integers Op of some algebraic number field
F. Suppose that for some prime ideal p coprime to the level N, we have

k
ordp(f —g) > 5(2u — 1),

then, f = g mod p.

Proof We apply the Riemann-Roch theorem valid in any field of characteristic
p which is coprime to N. This uses the non-trivial fact that Xo(N) has good
reduction for all p{ N and is due to Igusa (5] (see also Deligne-Rapoport {3]).
Again, cusp forms of weight 2 can be interpreted as differentials on Xo(N) over
Fp. The same argument as before is valid for arbitrary even weight k. (See
Silverman [11, p. 39] and (2, p. 96], for example.)

This approach has the advantage that it can generalize to two different
weights k; and ko.

Theorem 9 Suppose that f and g are cusp forms of weights ki and ks and
levels N1 and Ny respectively. Suppose further that at least one of ky or ko is
even. As before, let us suppose the coefficients lie in the ring of integers O of
some algebraic number field. If p is a prime ideal of Op, and

ordy(f — g) > kiko(p — 1)

then f = g mod p.

We can derive better variations of Theorems 8 and 9 which are better
for small primes, if we are willing to assume the generalized Riemann hypoth-
esis for certain Dedekind zeta functions. In fact, if f and g are normalized
Hecke eigenforms of level N, we know by Deligne [1] that there exists a Galois
extension Ky/Q and a representation

pp.s : Gal(K;/Q)—~GLy(Ok, /p)

such that for each prime v { pN, we have

tr(pp, (0w (Ky/Q))) = ay(f) mod p
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where o, denotes the Artin symbol of v. An identical result holds for g. Thus,
we may consider the compositum KK, and deduce by the Chebotarev density
theorem (see [6] or [9]) the following:

Theorem 10 Assume that the Dedekind zeta function of Ky Ky/Q satisfies
the analogue of the Riemann hypothesis and f and g are normalized Hecke
etgenforms as above with Fourier coefficients lying in a field F. If p is a prime
ideal of Op coprime to N and

ordy(f — g) > (log(Normpq(p)) + log N)*,

then f = g mod p.

Proof By the Chebotarev density theorem and the Riemann hypothesis for the
Dedekind zeta function of KyK,/Q, we deduce that for any given conjugacy
class C of Gal(KyKy/Q), there is a prime v with

Norm(v) < (log(Normg/g(p)) + log N)*
so that 0,(KsK,/Q) € C. Thus, if

ay(f) = ay(g) mod p

for each v whose norm satisfies the last inequality, then by Deligne’s theore-
mand the effective Chebotarev density theorem as cited above, we can conclude
thedesired result.

We can also remark that even if f and g are not Hecke eigenforms, a similar
result can still be established. Note however, these bounds depend on p. Also
worthy of contrast is that Theorem 5 is valid for all primes p whereas Theorems
8 and 9 are applicable only when p is coprime to N.
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Regular Singularities in G-Function Theory
MAKOTO NAGATA

The aim of the present paper is to generalize the theory of G-functions in
one variable to the two-variable situation. To indicate our motivation, let us
consider a G-function which is a solution of the Fuchsian differential equation

(%-A)X:O )

where A € M, (K (s)) with K being an algebraic number field of finite degree
over the rationals. A principal obstacle in investigating the behavior of G-
functions in one variable lies in the fact that such a solution is not expressible
as a power series at any regular singular points of the equation (1). In the
previous investigations [1], [8], [9] the derived differential equation

d 1

—Y =AY —Y-Res A,

ds s

where Res A is the residue matrix of A € M,,(K((s))) and Y the uniform part of
(1), was utilized in this context. This leads us, however, to a more complicated
situation than was experienced in [5, §1].

In order to overcome such a methodical difficulty we introduce, instead, a
partial differential equation in two variables which is equivalent to the equation
(1):

(6 -B )Z =0, (2)

where 9 = ad, + b9, with a, b € K(z,y) and B € M,(K((z,y))). This is
because solutions of (2) can be expressed as power series at any points, as we
shall show in Proposition 4. Moreover, we have a natural generalization of a
basic assertion in the one-variable theory (cf. Corollary 4.2 in [8, Chap.VIII)):

Theorem 1 Consider the partial differential equation (2) which is equivalent
to the Fuchsian differential equation (1). If the size of the matriz solution
of the partial differential equation (2) is finite, then the size of the Fuchsian
differential equation (1) is also finite.

A quantitative version of Theorem 1 is to be given in Corollary 1.
The introduction of the differential operator 8 implies the possibility of a sep-
aration of variables; and thus a certain change of variables is to be performed.
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This is not an easy task in general. However, our Theorem 3 provides us with
an explicit method to attain our purpose via a Frobenius transformation and
a substitution of logarithmic factors.

Acknowledgment The author would like to express his gratitude to Profes-
sor Yoichi Motohashi for his warm encouragement.

Conventions and definitions Let K be as above. For a place v of K we
normalize the absolute value ||, as in [1]. We put M|, := max; j=1, .. » |mil,
for M = (m; )i j=1,..n € Mp(K), which is a pseudo valuation. We write
log" a := logmax(1,a) (a € Ryp). For Y = EAJ.;OO 3Ty € Mu(K([z,yl)),
we define the function h..(-) by

1
hoo(Y) := log* |Yool,, hom(Y):= Eerrr;aé);llog Yijl, (m=12,...).

The size of Y € M, (K[[z,y]]) means the quantity
U(Y) e m@oo Z hv,m(Y)>
v

where v runs over all places of K. With this we shall call Y € M, (K]|[z,y]]) a
G-function in the two variables x,y whenever ¢(Y) < co holds. Next, suppose
that z,y are formal variables. For f = 3", +i<N fijz'y? € K[z,y] and for every
place v of K, the Gauss absolute value is defined by |f|, := max;y;<n | fi jl,-
With an arbitrary non-Archimedean valuation v the Gauss absolute value is
defined in the quotient field of K(xz,y) of K[xz,y] as well; that is, we put
|f/gl, == |fl,/lgl, for g # 0. This allows us to extend the above pseudo
valuation on M, (K) to M, (K (z,y)) in an obvious way. Then, for a sequence
{Fiti=o0,1,.. C Mp(K(z,y)) and for each place v { 0o, we put

hoo({F}) :=log" |Fol,, hom({F}) = lng;»xlog |Fil, (m=1,2,...).

In this way the size of {F}}i=0,1,.. C Mp(K(z,y)) is defined to be o({F;}) :=
Tim,,— oo 2 vtoo Po,m({Fi}). In passing we remark that our definitions of two
sizes are formal extensions of the corresponding concepts in [1] and [9]. In the
one-variable situation, the inequality

L dyng

nldz

<Ifl,

holds for any f € K(z) and n € N. But such a simple inequality does not hold
in the two-variable case. To avoid this disadvantage we introduce a factor v



Regular Singularities in G-Function Theory 323

in the following way: For any f, g € K|z,y] with max(deg, f,deg, g) <! and
max(deg, f,deg, g) < m, we put

<v(8,L,m,n,v)|f/g], (n=0,1,2,...).

2 (¢10)

Next let 3,2 € M,(K((z,y))). We define the sequence {(J, Ql) }z =0,1,.. C
M (K((z,y))) by

1

0) _ (i+1) _
(j 9’[) - a (3,2[)3 - + 1

(6(3, ) — Ql(J,Ql)g)) (i=0,1,...).

To treat {(J, Ql)g) }i=o,1,... is equivalent to considering the differential equation
(2). This is an analogue of the relevant sequence introduced in [9]; we have
replaced d/dz by 8 and put B = 0 there. We write 05(J,2l) as an abbreviation
for o({(3, Q()g)}); also 05(A) is used in place of o5(I, A). We remark that
0d/dz(A) = 047d4z(—'A) (see [10]). The size of the equation (8 — A)X = 0 is
defined to be 05(A). Further, we let a change of basis on & mean the operation
J[A]s := JAT! + (83)T7!, where T € GL,(K(z,y)) and A € M, (K (z,y)).

Having said these we have the following basic identities; proofs are similar
to those of the corresponding assertions in [9]:

Proposition 1 For 71,33 € GL,(K(x,y)), and A € M,(K(z,y)), we have

J1[32(A)als = (3132)[A]s.

Proposition 2 ForJ € GL,(K(z,y)), A € Mp(K(z,y)), and m =0,1,...,
we have
AL A5 = (3,914])5™.

Proposition 3 For 31,75, A € M,(K((z,y))), and m =0,1,..., we have

(3132,A)(3m) = Z (31,A)g)(32,0)g)-

i+j=m

1. Estimation of the sizes We shall show some properties of simultaneous
approximations of a solution of a partial differential equation and estimate
sizes.
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Let us assume that X € GL,(K([z,y]]) with X(0,0) = I is a solution of the
partial differential equation

X —AX =0 (3)

for an A € M,,(K(z,y)). Then we have

Lemmal Foranyqe€ K[z,y], P € M,(K|z,y]), and integers m > 0 it holds
that

m am m
.05 = (Z0) X - @A,

where R :=¢X — P € M,(K[[z,y]]).
Proof Similar to that of Lemma 5.1 in [9].

Notation Throughout this section the integers N, L are arbitrary but sup-
posed to satisfy the inequalities max(deggq,deg P) < N and ord R > L, where
R is as above, degg the minimum integer M such that ¢ = 3=, ;<5 ¢i,52%Y7,
and ord R the maximum integer M such that R =3, 5\, R;ja*y’. For the
A in (3) we choose a u € Oz, y] satisfying

uA € M,(K{z,y]), Oue€ K|z,y]
so that there exist f,g € K[z,y] such that
ud = f0; + gO,.
Here Ok is the integer ring of K as usual. We put
s = max(deg(ud), deg du, deg f, deg g).
Remark We may set u = den(A) - (den(a, b))2.

Lemma 2 We have, form=0,1,...,L,

md” ek degum O g < N
u —rﬁqu [z,y], degu 7an< + ms,
u™(P,A)S™ € M, (K[z,y)), degu™(P,A)™ < N +ms,
u™(R, A)S™ € M, (K[[z,y]]), ordu™(R,A)§™ > L —m.

Proof These assertions are proved by the inductive argument with respect to
m (cf. Lemma 5.3 in [9]).
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Notation For the power series Z = Y77 .50 Zijx'y’ € Mn(K|[z,y]}), we
introduce the truncation Z.,, := Y Z;jzty? (m = 1,2,...). We then
put

i+j<m

Hin(2)= 3 o 08" Vsl Hoom(2) 1= 3 e o 123,
voo vloco

as well as Hin(Z) := Hym(Z) + Hoo,m(Z). In particular, if Z € M,(K|[z,y]),
then we write H(Z) in place of Hiydeg z(Z).

Now write X = 37, ;5o Xi,2°y € Mp(K[[z,y]]). We assume that
there exist W € M, (K([[z]]) and V € GL,(K[y])

with detV =1, degV <d and Vjy_o =1 (4)
such that X = WV,

and that
(1+n2)N-(d-1)>L>N.
We then put
L (6 + (d —1)/N)n?
= — - = = l 2N l
§ N 1, « T~ G+ {d=1)/N’ B := alog(2Nk) + log &,

where k = 4[K : Q]?IKQ, /[ Dk [ with Dy being the discriminant of K and | - |
means the usual Archimedean absolute value.

Lemma 3 There exists a non-trivial ¢ € K[z] of degree < N — 1 such that
(¢X)<r = (¢X)<n. Moreover we may let this q satisfy the conditions Hy({(q) <
aHL(X) + B, Hpn(gX) < Hpn(q) + Hy,N(X) and Hoo,N(¢X) < Hoo,n(q) +
Hoo n(X) + 3log(N + 2). In particular, we have det((¢X)<n) € Klz}].

Proof We write ¢ =3,y ¢:z*, W = >0 Wzt and V = Zf;ol Viyt. Then
aW =310 Zzi;v:l qujx’. We consider the system of linear equations:

> aW;=0 (I=N-(d-1),...,L-1).
i<N
it+j=l

The number of equations is (L — N + (d — 1))n? and the number of unknowns
gi is N. Thus, if N > (L — N + (d — 1))n?, then the system has a non-trivial
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solution. Since ¢X = gWV = Y40 5, Z:ijiz ¢;W;Vizly®, we have, for
m=N,...,L, -

-1
(@WV)em = z Z A
k=0 k<itith<m
i<

d—1
= Z Z q.inVkiEz-l-]yk‘
k=00<i+j<N-d
<N

On the other hand, since (¢W)<m = (qW)<n—(a-1), We have

d—1
(qW)<mV = (qW)<N—(d—1)V = Z qlW]zZ'l'] Z kak
0<i+j<N—d k=0

i<N

d—1
= Z Z quij$i+jyk.
k=00<i+j<N-d
i<N
These yield that (¢X)<m = (qWV)<m = (W)<mV = (¢W)<nV = (¢X)<n.
Moreover det(qX)<m = det(qW)cmdetV = (gW)<,, € K|[z] because of the
assumption det V' = 1. Since

H (W) = Zf{;aglogJ’ Wwil, < Zi%iXLIOng WiVl = HL(WV) = HL (X)),
v v

we obtain Hy(gq) € aHr(X) + B by virtue of Siegel’s lemma in [2]. As to
Hy n(P) and Hyo, n(P) we can estimate them as in [9, Lemma 5.6].

Lemma 4 Let X = Y, ;50 Xij2'y? € My (K([[z,y]]) with X(0,0) = I, and
let us assume that max(deg q,deg P) < ord R and qP # 0. Then we have that
det P # 0.

Proof 1If there exists a t € C such that det Py—;; # 0 then detP # 0.
Write ¢P = 35, i on Ui @'y’ I qPycts = 21 jcon Uitz = 0, then
Yitjem U;jt# = 0 for m = 0,1,...,2N — 1. The number of roots in C of
these equations in ¢ is at most 2N — 1, since there exists at least a U, ; # 0.
We fix a t € C outside the set of these roots. Then qjy—¢; # 0, Py=¢; # 0 and
max(deg q|y—¢s, deg Ply=t;) < ord Rjy—¢;. Thus we conclude via Lemma 5.6 in
[9] that det P # 0.

Lemma 5 For f € K[z,y], f #0, we have

> logli/fl, <Y log|fl, + 2log(2 + deg f).

vtoo v]|oo
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Proof We take a root of unity { such that fj,—¢; # 0. On noting that the
number of terms of f is not greater than (2 + deg f)?, we proceed as in the
proof of [9, Lemma 6.1].

We now turn to the estimation of the sizes:

Theorem 2 We have that

oa(A) < (2n2(1 +5) (2n + 2—1— + 1) + s) o(X) + H(u) + 2log(s + 2)

- 3 — ;
+2"}5nwm;10g max (9, (2n*(1 + 5) = 1)m, dy,5, ), (5)
ki (o8]

where dy = n(d — 1).

Proof Let the integer N be sufficiently large. We put L := [(1+ in~2)N] -
Let ¢ be as in Lemma 3 and put P = (¢X)cn. If

N+ms<L-m,

then we see, by Proposition 3, Lemma 1, and Lemma 2, that

(I,A)gn) = Z (P,A)(z)(P_l 0) (J) Z (P, A)(l)a
i+j=m i+j=m
i
= Z u ™ ((u’i'q) X) —a,—|P’1.
i+j=m & <N+is J'

This implies that we have, for v 00,

log* max ‘(1, A

, < logmax|u™],

((51) %)
v <N-+is v

Let P be the adjoint matrix of P. We write

a_ip-l
m |4l

+ log™ max
i<m

v

d; = max(deg, P, deg, det P)

and _
dy = max(deg, P, deg, det P).
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We have that d, < n(N — 1) and d; < n(d — 1), and by Lemma 3 that
det P € K[z]. By Lemma 5, we have

Zr%an)lclog [u—i|v < mZIOg |u‘1|v <m (Z log |ul|, + 2log(s + 2)) ,

vfoo vioo v|oo

3 log|(det P)~Y], < S log|det P, + 2log(nN + 1)
vtoo

v|oo

< nZlog |P|, + 5nlog n!(N + 1),

v|oo

and _
> log*|Pl, < (n—1)> log* |P|,.

vtoo vtoo

We note that ¢ € K[z]. Write d, = deg, ¢. Then we have that

i
2:log+ max ((u’a—'q) X)
ism & <N-+is|,

< Z log* lal, + 210g+ 1%3‘"31( | X <N+isly

vfoo vtoo
+ i + 70
+ Zlog max |u |U + Zlog riria:r)lc'y(@, dz,0,%,v).
vtoo - vfoo -

Hence we have

Zlog+g§a;lc’(1w4)g) ,

vtoo

< Hf,N(Q) + Hf,N+ms(X)

+ mHg(u) + mHxo(u) + (n — 1)Hy n(P)
+ nHeo n(P) + 5nlogn!(N + 1)
+2mlog(s +2) + 2 Z log* riréa%c'y(a, max(dy,dz), dy,1,v).

vfoo
Since

H;n(q) + (n— 1)H; n(P) + nHoo N (P)
< Hpn(q) + (n—1)Hyn(a) + (n — 1) Hy N (X)

+nHoo,N(q) + nHoo n(X) + 3nlog(N + 2)
<nHp(q) +nHyn(X) + 3nlog(N + 2),
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we have

S maxlog* (1, 4))| < nHy(g) +nHy(X)
i<m v
vioo

+ Hf Nyms(X) + mH(u) + 2mlog(s + 2)

+ 5nlogn!(N + 1) + 3nlog(N + 2)

+ Kt .
+2 Z log ?%an;fy(a, max(dz, dz), dy, 1,v).
vtoo

We assumed that N + ms < L —m, i.e, N+ ms < [(1+ 3n"%)N] —d — m.
Now let m be the maximum integer such that m < (N/(2n?) — 1 —d)/(1 + s).

Hence we find that m/N — (2n%(1 + 5))~1, 3/N — 0 when N — oo, where 3
is as in Lemma 3. We put o/ = limy_,o & Then we have

m—o0 N

- L + (@
os(I,A) = lim ——{Zriréan}flog |(I,A)¢9 .
Vo0

m—00

N +ms 1
+ L —
N +ms

— L1 N1
= lim nEZa(HL(X)-i-ﬂ)-I_nTn—ﬁHN(X)

Hi Nims(X) + H(u) + 2log(s + 2)

-_— 2 + T .
+ "}gnoo - Z log max (0, max(dy, ds), dy, ,v)
vtoo -

1
< (2n3(1+s) (1+ 517) a'+2n3(1+s)+2n2(1+s)+s> o(X)

+ H(u) + 2log(s +2)

T 2 + 3 .
+ "}1_1)1100 p fZlog I%anulc'y(a, (2n (1 + s) — 1)m, dy, i,v).
v{oo

Now we find that § —» n~2?/2 as N — co and o/ = 1. Hence we obtain (5).

Remark If we assume that V € GL,(K([y]]) with detV =1 and Vjy_o = I
in (4), that is, V is not a matrix of polynomials, the inequality (5) holds for
dy = (2n3(1 + s5) — I)m.

2. Regular singularities of Fuchsian differential equations We con-
sider the differential equation

d
X (@) = A@@)X(z) (6)

with zA(x) € M,(K|[z](g)). Throughout this section, we shall assume that

every eigenvalue of Res (A(x)) is contained in Q.
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Proposition 4 Let ¢ be the common denominator of the eigenvalues of
Res (A(z)) and let & = (cz®~1)718, + (cz®)718,. For the differential equa-
tion (6) and its matriz solution X (x), there exists T(x) € GLn(K(z)) which
satisfies the following properties: There exist W(z) € GL,(K|[z]]) and V(y) €
GL,(K[y]) with W(0) = V(0) = I and with degV(y) < n, and there exists
B(z) € M,(K(z)) which satisfies the partial differential equation:

HW(x)V(y)) = B(x)W(x)V (y),
where
B(z) = T(z)[A(z%)])s and W(z)V(logz) = T(x)X (z°).

Moreover the following inequality holds:

04/dz(A(z)) < 05(B(x)) + nh Z logp +nhc,
p:prime

(p,c)#1

where h = max |c - (eigenvalue of Res (A(x)))|-

Proof First of all, we note that a differential equation 8% = AX is equivalent
to 8(TX) = X[X]a(ZX) for any T € GL,(K(z,y)). After applying a Frobenius
transformation, £ — z¢, to the differential equation (6), we have

d

de( ) = ez L A(2%) X (z°)

and - cz® 'A(z°) € M,(K[z](;)) and every eigenvalue of Res (cz®~A(z¢))
belongs to Z. Applying several times the sharing transformation (see [4] and
[9]), we find T'(z) € GL,(K(z)) such that every eigenvalue of

Res (@) [z~ A2 ]a/az)
is zero. Since

T(z)[ez* " A2)]asde = ca® ' T(z)[A(z)]o,

we have
d%(T(x)X (z9)) = ez°'T(2)[A(2%)]a(T(2) X (2°))-
There exists C € GL,(K) such that

CRes (c2°"'T(2)[A(2%)]0)C~" = C[Res (cz°™ 'T(2)[A(z°)]a)]o
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is the Jordan form. Therefore we have by Proposition 1
“(CT(S'J)X (2°)) = ez*}(CT(x))[A(z%)]a(CT () X (z°))-

We put T'(z) = CT(z) and B(z) = T(x)[A(z¢)]5. In general, we know (see [1])
that there exists a unique solution W{(z) € GL,(K|[z]]) with W(0) = I of the
differential equation

-;-:B—W(a:) = cz® ! B(z)W(z) — W(z)z~'Res (cz°" ! B(z)).
Moreover W (z)zRes (=" B(2)) is 5 matrix solution of (d/dz)Z = cz*~1B(z)Z.
We put y = logz. Since

00
ZRes (cz°'B(z)) _ Z l' Res °“lB(x))y)i
=0

and since (Res(cz® !B(z)))" = 0, we find that gRes(e=""B(=) = T 4 J(y)
where J(y) € M,(Ky]), 0 < degJ(y) < n, J(y) is a triangle matrix and all
diagonal components of J(y) are zeros. Let V(y) := I+J(y). Hence we see that
a matrix solution of 8Z(z,y) = B(z)Z{(x,y) is given by Z(z,y) = W(z)V (y).
Moreover we have, as in [9, Section 3],

a(A(z°)) = 0o(T(z), T(2)[A(z)s) < oa(I, T(2)[A(z%)]6) + 05(T(x),0)
by Propositions 2 and 3. Let F' be the set

{(aij)ij=1,.. mlaii=1l,z or z71, a;; =0 (i # j).}.

Following the proof of [9, Lemma 4.1}, we see that there exist Cy,...,Cpy €
GL,(K) and Ty,... ,Typ € F such that T'(x) = T, Chp - - - TAC1. Since

05(3172,0) < 05(J1,0) + 05(J2,0),

we have
nh

oa(T(x),0) < 0a(C,0) + Y _(08(T3,0) + 05(C;, 0)).
i=1

An elementary computation gives

1 -
05(T3,0) < Tm —~ 7 mlog|1/c], + (p— 1) logp)
(p.c)#1,p<m
p:prime

logp
< Y —1te
(p,0)#1

p:prime
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and 05(C,0) =0, 05(C;,0) =0 for ¢ = 1,... ,nh. Then we obtain

1
L

0a(T(z),0) <nh Y

(p,c)#1

p:prime

On the other hand, we have
(LAEDS = (L A@)Y, = T

and if (I, A(z%)) "™ = (I, A()) 7 )iaae then

(m + 1T, AENE™ = — 0.1, A" — AT, A

_dd
T dzedz

d m m
- (E(I, A@), - A=), A(x))fi/iz) -

=(m+1) ((I, A(x))f{/"d*;l)) lzze

(1, A5 — A(z°)(I, A(z®)) 5™

Then we find that o5(A(2°)) = 04/4:(A(x)). Therefore we have

1
Oajaa(4) = 05(A(@%)) S 0a(B) +nh Y —=EE 4 nhe,

(p,c)#1
p:prime
which ends the proof.
Now we consider the estimation of the factor «v(&,... ,v) which we have

introduced above; we may impose the condition g € K|z} for the sake of our
application (see Section 1). For 9 = a8, + b0, with any a,b € K(z,y), we have

Tt = Y (?rf) (%‘1/90 |

i+j=m

Let 1, 72 be such that

b
i/

< 1(0,deg, f,deg, f,i,v)|fl, (f € Klz,y])

< 72(0,5,v) [1/gl, (9 € K[z]).

v

%(1/.(;)
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Then we may put
7(8) deg:z: fv degy fa m, ’U) = zﬂa:)fn it (67 degz f7 degy f1 iv ’U)’Yz(a,j, ’U).

Thus we need to estimate v; and 7, for our particular differential operator
9 = (cx®1)718, + (cz®)~18,:

First we shall estimate ;. Let integers g.(-,-) be defined by g.(s,0) = 1,
gc(s,n) = (s — (n — 1)¢) - ge(s,n — 1) recursively. Let G(s,n,l) be the Z-
module generated by the numbers g.(s,n)/(a; - --a;) where a; = 1 or s — je
for a certain j = 0,...,n — 1. It is easy to see that if § € G(s,n,l) then
(s—nc)-§e G(s,n+1,1) and thus § = §g(s —nc)/(s —nc) € G(s,n+ 1,1 +1).
Hence G(s,n,l) C G(s,n+ 1,1+ 1).

Lemma 6 For 8 = (cz®')719, + (cz®)~18,, there exist as i € G(s,k,t —1)
such that

i
Ckak(xsyt) — xs—kc Z as,k,iyi
—

for k,s,t € Zxo.

Proof We use the induction with respect to the parameter k. For k = 0, we
see that 0,1 € G(s,0,1), a0t =1 and ag0; =0fori =0,...,t —1. Let us
assume that there exist the coeflicients a,;; for [ < k. Increasing the value of
k by 1, we put bs k11, = (s —ck)ag ki € G(s,k+1,t —1), Cok41,i—1 = 10s ki €
G(s,k,t—1) C G(s,k+1,t—(i—1)) and ¢s k41,0 = Cs,k+1,¢ = 0. Then we have

t t
Ck+1ak+1$8yt — xl—cam (xs—kczas’k‘iyi) + z—cay (xs_kczas,k,iyi)
=0

=0

t t
- zs—c(k-}-l) (Z(s _ Ck)as,k,iyi -+ Z ’l:as,k,iy’i—1>

i=0 i=1

i
= gomelk+D) Z(bs,k+1,i + Cs,k+1,i)yi'
i=0

Since by g+1,i + Cs,k+1,i € G(s,k + 1,t — ©), we end the proof.
For any § € U:=0 G(s,m,i) = G(s,m,t) and for v with v | p, we have, by a
standard argument, that
(s +c+me)td/d if (p,c) =1, p<m,
< q 1/plp/ 7Y if (p,c) #1, p< m,
1 otherwise,
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where d = [K : Q] and d, = [K,, : Q,]. Thus by Lemma 6 we have

(nl +c+ nlm)nzdv/d if (p) C) =1, p<m,
118, m1,m2,m,0) < ¢ (/e 1/plg /D if (o) #£1, p<m,

1 otherwise.

Next, for g € K|z], g # 0, we have

am
\mg . < 73(6’ m, U) |g‘v y
where
I1/cly [1/plg7®Y if (p,0) #1, p<
73(6m,u)< /c'u pv 1 p’c) 7p—m7
B I | otherwise.
Since om 5 59
=~/ ¥ (59) (Gam),
ifj:m
<m
we have

[Zasm

ot o’
- —(
ol [Sas0

< [1/g], max
v R v

Hence we may set
’)’2(8, 0, ’U) =1, ’}’2(6, m, U) = zf;i}fn ’73(871:’”)72(87 Js 'U).
ji<m

In this way we obtain
Theorem 3 Let 8 = (cz®1)718, + (cz°)18,. Let the valuation v divide a
prime p. Let us put, for non-negative integers nq, ng, m,
(m +c+nym)2®/d if (p,c) =1, p<m,
1(0,m,n2,m0) = § |1/e7 11/plYPTY if (ne) #£1, p<m,

1 otherwise.

Then for any f € K(z,y] with deg, f < ny, deg, f < n2 and for any g €
Klz], g # 0, we have

Z 10

S’yl(aynlyn%mav) |f/g|v (m=071’2)

v
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Now let M and ny be finite and let n; be such that ny /m < M for any m.
Then we find that

Tim ——Zlog max'y(a ni,ng,i,v)

m—o0 M

= ]- 2
S"}E’nooa ; ng log(Mm + Mm* + ¢)
psm

p:prime

+ Y m(logll/cl, + (p—1)""logp)
(pfc)?él

p:prime

I
<2np+c+ Z ng
(pc)#1

p:prime

for

Iim — Z logm < hm —ﬂ(m)logm—l

m—o0 M
p<m
p:prime
with a common notation. Hence we obtain the following assertion via Theorem

2; this is the quantitative version of Theorem 1 that was mentioned in the
introduction:

Corollary 1 For the differential equation (6) and the corresponding solution
W(z)V (y) in Proposition 4, we have

047dz(A) (1 + s)n(4n? + 2n + 1) + s)o(WV) + H(u) + 2log(s + 2)
1
+4n(n —1) + (2 +nh) Z O_%I; + (2 + nh)c.
(p,c)#1

p:prime
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Spectral Theory and L-functions
Talk Report

PETER SARNAK

1. Prime Geodesic Theorems There are some similarities between the
Selberg Zeta Functions Zp(s), where I’ is a congruence subgroup of SL2(Z)
and the Dedekind Zeta function {x(s), where K is a number field. Recall that
for such a group I' whose set of primitive hyperbolic conjugacy classes {v} is
denoted by Pr and whose norms we denote by N({7}) (N(v) = |A\]?> where v

is conjugate in SLa(R) to [3 o, ] I\l > 1), Zr(s) is defined to be the “Euler”
like product

Ze(s)= [[ TIa-Nm=—= (1.1)

{v}ePr k=0

It is well known that these {y} € Pr correspond to (primitive) closed
geodesics on Xr = I' < H (H is the upper half plane) whose lengths are
2 log N(v). Like (k(s), Zr(s) has a meromorphic continuation to C and a
functional equation. Moreover it is expected to satisfy the analogue of the
Riemann-Hypothesis: that Zp(s) has no zeros in Re(s) > 1/2, s # 1 (un-
like {k(s) it has a zero at s = 1 rather than a pole). Towards the latter we
know much more about Zr(s) than for (x(s). The reason is that the zeros
s; = 1/2 4+ ir; (in Re(s) >1/2) of Zp(s) correspond via the trace formula to
the eigenvalues of the Laplace-Beltrami operator A on L?(Xr), via the rela-
tion \; = 1/4 +r2. Since ); is real and non-negative, the zeros of Zr(s) in
Re(s) > 1/2 must lie in (1/2, 1] and these will be there only if A\; < 1/4. Thus
the “Riemann Hypothesis” for Zp(s) is equivalent to the Selberg Conjecture:
A1(Xr) >1/4 (A(Xr) = 0 corresponds to the zero of Zr(s) at s = 1). We will
discuss this conjecture in detail in Section 2.

While there are the similarities described above, there are also major dif-
ferences between Zr(s) and (x(s). One difference is that, unlike the zeta and
L-functions of number theory, Zr(s) is meromorphic of order 2. That is, the
number of zeros of Zp(s) whose imaginary parts are of modulus at most T
and whose real part lies between 0 and 1, is asymptotic to CpT? as T — oo
(Cr > 0). This is in contrast to the C T log T behavior for L-functions. This
difference leads to another. In the case of (k(s), the Riemann Hypothesis
implies (and is implied by) the following about counting of primes: For any
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e>0
Hk(z):= Y 1=Li(z)+ O (z'/?*) (1.2)
N(P)<z

as £ — 00, the sum being over the prime ideals of O and Li(x) = f; ]—fgt—t.

In the case of Zr(s) the preponderance of vertical zeros makes it much more
difficult to estimate the remainder term in the counting of closed geodesics. If
the possible exceptional zeros of Zr(s) in (1/2,1) are denoted by si,...,s,,
then one can show using Zr(s) (2], or the trace formula directly [15], that the

“Prime Geodesic Theorem” holds in the form

Or(z):= »  1=Li(z)+ Y Li(z®%)+ O(z**) (1.3)
{v}€Pr Jj=1
N(v)<=

In view of the estimates towards the Selberg Conjecture, established by Selberg
— see (2.1) below, we have

Ir(x) = Li(z) + O(z%/4) (1.4)

We expect that (1.4) holds with the remainder term of size O.(x/2+¢) for
any € > 0 and to make any improvement of the exponent 3/4 one needs to
capture some cancellation in sums of the form

> xin (1.5)
Irjl<T

for T and X in various ranges.

For T' = SLy(Z), Iwaniec [5] introduced Rankin-Selberg L-functions into
the picture in an ingenious way. This enabled him to obtain nontrivial upper
bounds in (1.5) and hence that

sp,z)(2) = Li(z) + O, (x3%/48+%), (1.6)
If ¢; is a basis of the Maass-Hecke cusp forms for L2(SLy(Z) \ H) we may write

Ad; +A\jb; = 0
Tad; = Vn Aj(n)¢;

where T, is the n-th Hecke operator on L?(SL(Z) \ H). The Rankin-Selberg
L-function associated with ¢; ® ¢; is

(1.7)

oo ()2
L(s,9; ® ¢;) = Zw (1.8)
n=1
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In the same 1984 paper, Iwaniec notes that the following (“Mean Lindelof”)
Conjecture would greatly simplify his proof and would also yield a better ex-
ponent.
> ILG +it, 65 ® 65)| (It + 1T (1.9)
Iril<T €

Recently Luo and the author [10}, in the course of our investigations into the
question of equidistribution the measures |¢;(z)|? dz dy/y? on Xr, established
(1.9) for any congruence group I'. Combining this with recent estimates on
A1(Xr), see Section 2, we proved: For any congruence subgroup of SLz(Z)

Np(z) = Li(z) + 0, (z16%), &> 0 (1.10)

For more on the geometric and number theoretic (“class numbers”) interpre-
tation of the Prime geodesic Theorems, see [15]. The proof of (1.9) makes use
of arithmetical ingredients such as Weil’s bound [19] for Kloosterman sums and
also analytic ingredients such as Kuznetsov’s trace formula [9]. Another crucial
more recent result which is used in the proof is the lower bound of Hoffstein
and Lockhard [3]: For ¢ > 0, 1}—618 L(s,¢; ® ¢;) i? |rj|~¢. We refer to [10] for

details.

2. The Ramanujan Conjectures As we noted, the analogue of the Rie-
mann Hypothesis for Zp(s) is equivalent to Selberg’s eigenvalue conjecture. In
the 1966 paper [16] in which Selberg formulates his conjecture, he proved that
for I a congruence subgroup

3
M(Xr) 2 75 (2.1)
His proof of (2.1) is based on relating the spectrum of Xt to sums of Kloost-
erman sums. With this connection an application of Weil’s bounds [19] yields
(2.1). Even today we still don’t know if it is possible to improve on (2.1) using
Kloosterman sums. It is interesting to note the coincidence that in (1.3) the
only zeros that are relevant are those with s; > 3/4 which is exactly what

A1 > £ eliminates, yielding (1.4). Another remark is that for I' of small level —
precisely for [(N) = {(‘:2) € SL2(Z) : (‘ZZ) = ((1)(1)) mod N} and N <17
— differential geometric methods can be used to prove A;(Xr) >}, see Hux-
ley [4]. This is the reason that exceptional eigenvalues were not an issue in
Iwaniec’s result (1.6).

Recently Luo-Rudnick and the author [11] found a new way of using L-
functions to give lower bounds on A;. This method finally goes beyond (2.1)

and yields
21



340 P. Sarnak

This corresponds to Zr(s) having no zeros in Re(s) > & (s # 1), which by
coincidence is again exactly the present limit of the remainder term in (1.10).
This is really a coincidence since an application of our method to the symmetric
square L-function (rather than the Rankin—Selberg L-function) leads to a slight

improvement

171
M (Xr) 2 7o = 021811 ... (2.3)

The bound (2.2) is a part of some results towards the general Ramanujan
Conjectures for GL,, over a number field, which we establish in [12]. Let F
be a number field of degree d over Q. Let m be an automorphic cusp form on
GL,(Ar) and denote by 7 its contragredient. The standard L-function L(s, )
associated to m [6] is given by

L(s,m) =[] L(s,m) (2.4)

the product being over all the places of F. At an unramified finite place v of
F, L(s,m,) is of the form

[T (- eIV~ (2.5)

N(v) being the norm of v and ¢ € C. The local factor at an unramified
archemedian place is of the form

H Ty (3 - aj,w(v)) (2'6)
j=1
where 7=%/2T(s/2) if v is real
-

(2m)~°I'(s)  if v is complex.

The general Ramanujan Conjectures assert that if 7 is unramified at v then

lojr(v)f =1 if v is finite
Re(ajx(v)) =0  if v is archemedian. (2.7)
Soif F =@, n =2 and 7 is the automorphic cusp form associated to a Maass
eigenfunction of A on I'(N) \ H, then for v = co, A = % + (iay,x)%. Thus the

general Conjecture 2.7 imply A>1/4.
Jacquet and Shalika [7], using local methods, proved that

logn(y) lagr (V)| < % for v finite

1
|Re (o, (v))} < 3 for v-archemedian (2.8)
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Serre [17] observed that the Rankin-Selberg L-functions, L(s,7 ® 7) (as-
suming its analytic properties) can be used to show that for any finite v

1

1
27 dn2 +1 (2.9)

llog Jexjx (v)|] <

In [12] we establish the following:
Let F, n, m be as above and v a place of F' at which 7 is unramified. Then

11 ,
(a) log N (v) o, (V)] < 2 Tl v finite

(2.10)
(b) [Re (@, (0))] < % - n?;-l-l v archemedian

For n >3 and v-archemedian this is the first result which goes beyond the
local bounds. If we combine (2.10) in the case of n = 3 with the Gelbart—
Jacquet lift {1} from GL2 to GL3 we get:

Let F, m be as above and let n = 2. If v is a place at which 7 is unramified
then

1 .
(a‘) lOgN('v) |C¥j,ﬂ-(’U)| < ga v finite
(2.11)

(b) |Re (o« (v))| < if v is archemedian

(SN

Remark Part (a) of (2.11) is not new. Shahidi [18], using quite different
methods, established this some time ago (in fact, in the somewhat stronger
form which excludes the case of equality). As far as part (b) goes, previously
such a bound was known with 1/5 replaced by 1/4 (Gelbart-Jacquet [1]), which,
when F' = @, corresponds to Selberg 8 3/16 bound in (2.1). Applying (2.11) in
this case of F = Q yields \; > (k},)2 =2

The results (2.10) and (2.11) have a number of other applications of this
type to bounding eigenvalues of Laplacians on arithmetic manifolds, see [12].

The proof of (2.10) makes essential use of the known analytic properties of
the Rankin-Selberg L-functions L(s, 7 ®2), due to Jacquet, Piatetski-Shapiro
and Shalika [8], Shahidi [18], and Moeglin-Waldspurger [13]. The proof is based
on considering L(s,m ® T ® x) for suitable ray class characters x of F. In this
connection the constructions of Rohrlich [14] are important.
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Irrationality Criteria for Numbers of Mahler’s Type
TARLOK N. SHOREY! and ROBERT TIJDEMAN?)

Mabhler, Bundschuh, Shan and Wang, Sander, and others have derived irra-
tionality criteria for real numbers of the form

a(g) = 0.(g"™)n (¢™)n (")~

where ¢ > 2 and h > 2 are integers, {n;}$2; is a sequence of non-negative
integers and (m);, denotes the finite sequence of digits of m written in h-adic
notation. In the present paper the results are extended to numbers of the form

a=0.(97")n (92*)n (95°)n - -

where h > 2 is an integer, {g;}$2, is any sequence of non-negative integers
and {n;}$2, is a sequence of integers greater than 1. Furthermore, we give
an irrationality measure. We do so by exploiting estimates for linear forms in

logarithms of rational numbers.

1. Introduction In 1981 Mahler [5] showed that the number obtained by
the concatenation of the consecutive powers of two,

0.12481632641282565121024..., 0]
is irrational. For integers m > 1, h > 2, we write (0), =0 and
(m)p = mamz -+ -m,

when m = myA™ "1 +moh™ "2 4. .. 4 m, for integersr >0, 0 < m; < h (1 <i <
r) with my # 0. For a positive rational number m with denominator composed
only of prime factors of h, let v be the least non-negative integer such that h¥m
is an integer and we extend the preceding definition by putting (m)x = (h¥m).
We call r the h-length of m. We express Mahler’s above mentioned number (1)
by

0.(2%)10 (2110 (2%)10 210+ - -

This paper was written during a stay in Japan which was made possible by a grant from
Nihon Universityl), Tokyo and a NISSAN-grant of Nwo?) (the Netherlands Organization
for the Advancement of Scientific Research).
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We now know that the real number

a(g) = 0.(g°)n (9" (¢*)n (¢®)n -

written in h—adic expansion is irrational for any integers ¢ > 2 and h > 2.
This was shown for h = 10 by Mahler and for general A by Bundschuh [4].
Bundschuh gave also an irrationality measure for a(g) in case logg/logh € Q,
but wrote not to have been able to give a similar result in case logg/logh ¢
Q. Niederreiter [6] gave a very simple proof of a more general qualitative
irrationality result. Shan [9] gave another proof, using Kronecker’s theorem.

Yu [12] studied classes of numbers of the form

a(g) = 0. (g")n (¢")n (" )n---»

where {n;}$2, is a sequence of non-negative numbers. Shan and Wang [10]
showed that a(g) is irrational if {n;}$2, is strictly increasing. Sander [7] ob-
served that it suffices to require that the sequence {n;}$2, is unbounded. We
shall not restrict ourselves to powers of some fixed integer, but allow powers of

different rational numbers whose denominators are composed of prime factors
of h.

Theorem 1 Let h > 2. Let {g;}2, with g; = A;/B;,B; > 0 and ged
(A4;,B;) =1 be a sequence of non-negative rational numbers such that all the
B; are composed solely of prime factors of h. Let {n;}2, be a sequence of
integers each greater than one. If the real number

a=0. (97" )n (92°)n (93°)n - - (2)

is rational, then the sequence {A]*}2, is bounded such that each limit point
is bounded by an effectively computable number depending only on h and the
period r of a. Furthermore, except for finitely many i, B} = k¥ /X\; where v;
is a non-negative integer and \; is a positive integer which is bounded by an
effectively computable number depending only on h and r.

If g; = 0, we understand that A; = 0 and B; = 1. Further we follow the
convention that empty product is equal to one allowing g; to be an integer in
Theorem 1. If a is rational, then its h-adic expansion is periodic, that is, there
exist positive integers r and M such that if the h-adic expansion of a is given
by a = 0.a1a2a3..., then a4 = a,, for every m > M. We call 7 a period of a.
If M = 1, we call the expansion purely periodic. The following example shows
that the possibilities in Theorem 1 can occur. Let p and ¢ be distinct primes
and m any positive composite integer. Put h = pg, A;, B;,n; > 1 such that
AT = (h—1)™ and B = h*™ /p™ for all i. Then (A;/B;)™ = p™(h—1)"/h"™.
Since p™(h —1)™ is not divisible by h, the h-adic expansion of (A;/B;)™ is the
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h-adic expansion of p™(h — 1)™. Hence a is a rational number whose h-adic
expansion consists of repetitions of the h-adic expansion of p™(h — 1)™. Since
this is an integer less than h?™, the minimal period r of a is less than 2m.

If {g;}2, is a sequence of non-negative integers, we note that it follows
from Theorem 1 that this sequence itself is bounded by a number depending
only on h and a. The method even enables us to give irrationality measures,
although of a rather bad quality. As an example we prove the following result.

Theorem 2 Let g > 2 and h > 2. Let {g;}$2; be a sequence of integers
greater than 1 and bounded by g. Let {n,} be a strictly increasing sequence
of positive integers such that n; < Con?_, for t=2,3,.... Let a be defined by
(2). Then there exists an effectively computable posztwe number C depending
only on Cy, g and h such that, for all (P,Q) € Z x N,

2
e~ CQ",

P
a——| 2
Q"

It is possible to derive an irrationality measure independent of g, but this mea-

sure might well be much worse. In order to compute such a measure one has to
make all the estimates in the proof of Theorem 1 quantitative. It is interesting
to compare Theorem 2 with the irrationality measure given in Theorem 3 of
Becker [2].

Sander studied also the case that the sequence {n;}$2, is non-periodic and
bounded. He showed for this case that if a(g) is rational, then g™ = gV
(mod h) for some pair of distinct limit points Ny, N2 of {n;}$2,. In fact, there
exist limit points Ny < N; of {n;}$2, such that g™ = ¢™V2(mod h!) where [ is
the h-length of gV, This follows from part (a) of the following result.

Theorem 3 Let h > 2. Let {g;"}32; be a bounded, non-periodic sequence of
perfect powers such that the resulting concatenatzon number a is rational. (a)
Then there exists a pair of limit points g;"* < g] I such that

9i" = g;’ (mod hlo) (3)

where Lo is the h-length of 7. (b) Then there exists a pair of limit points
T i
9;" <g;’ such that
0 < hl1ghi — plagh < pl2 (4)
where Ly and Ly are the h-lengths of g7* and g;.lj , respectively.

Some further results of this type can be found in Becker and Sander [3].

A perfect power is an integer of the form b™ where b and n are integers with
b > 0 and n > 2. Sander [7] and later Becker and Sander [3] gave necessary
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and sufficient conditions for the rationality of a(g) in case {n;}$2; has only two
limit points. Again we shall extend the results to general perfect powers.

Theorem 4 Let h > 2. Let {97*}32, be a bounded, non-periodic sequence of
perfect powers with exactly two limit points, g;* < g;.” , both positive. Then the
resulting number a is rational if and only if there exist positive integers b, k,l
and r with hA"~1 < b < h" such that

Y P T A
gi'zbﬁr 9; =b71r—_1- (5)

If g; = gj = g, then g"~™ = (h'" — 1)/(k*" — 1) € Z which implies that
k|l, whence h!" is a power of h*". This is Sander’s result. (Sander allowed
exponents 1 and excluded 0.) He applied a result of Shorey and the author to
show that in his result g, h,n; and n; can be bounded in terms of the smallest
prime factor of g. His claim that they can also be bounded in terms of h only
is unjustified, although probably true. Saradha and Shorey [8] have given a
class of values of h for which they justified Sander’s claim.

In Section 2 we apply results from the theory of linear forms in logarithms
and its consequences. The elementary proofs of Theorems 3 and 4 are given in
Sections 3 and 4. Section 3 contains two general lemmas. The authors thank
the referee for pointing out a mistake in an earlier version of the paper.

2. Proofs of Theorems 1 and 2 We apply Theorem 12.1 and Corollary 1.1
of [11]. Let P > 2 and denote by S’ the set of all integers which are composed
of primes less than or equal to P. Let k be a non-zero integer. Then we have

Lemma 1 There exists an effectively computable number C depending only on
k and P such that equationax™—by® = kinac S',be S, x € S, yeZ,meZ
andn € Z withm > 1,n> 1,z > 1,y > 1 implies that

max(| a|,| b],m,n,z,y) < C.

Lemma 2 Ifz > 0 and y > 0 are elements of S’ satisfying x — y = k, then

max (z,y) is bounded by an effectively computable number depending only on
k and P.

In order to prove Theorem 1 we assume that a in (2) is rational. Then its h-
adic expansion is periodic with period r, say. Suppose aptr = Gy, for m > M.
Choose N such that the representation of (g3 ) in (2) starts with a; where
i > M. Consider some g;* with i > N. Let v be the least non-negative integer
such that h”g"* is an integer. Then

RYgP = (broth™™ Y 4 by_gh™ 2 4 L 4 o) (BT DH L pre=D+ L ply
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where (bp—1bp_2...bo) with b._1 # 01is a period cycle of the h-adic representation
of g;'* and rk + [ is the h-length of g]* and | < r and ¢ < h!. Hence

k
I

v
h¥g"* = bh T

+c with 0<b<h". (6)

Note that b, c and [ are bounded in terms of h and r. We apply Lemma 1 and
Lemma 2 to the resulting equation

(bh®)(h")* — (A"

™ = bht — c(h" — 1)

where we observe that the right hand side is non-zero. It follows that A7 < Cy
and 1 < h¥/B}* < C; where C; and C; are effectively computable numbers
depending only on h and r.

The proof of Theorem 2 is based on the following estimate of Baker [1] for
linear forms in logarithms of rational numbers .

Lemma 3 Let by, b, ..., b, be integers with |bj| < B for j =1,..,n -1 and
b, # 0 where B > 4. Let a;,a9,...,a, be positive rational numbers such that
the numerator and denominator of a,, have modulus < A where A > 2. Put
A =bilogai+...+byloga,. Then there exists an effectively computable number
C3 depending only on n,ay,a,...,an_1 such that, for any § with 0 < § < %,

etther
5 Cslog A
A=0 or I/\|><'b |) e 9B,

In order to prove Theorem 2 we observe that Fermat’s little theorem implies
that the h-adic expansion of P/Q has a period r which divides ¢(Q). The
preperiod of the expansion is at most 2log Q). Let i be so large that the number
of h-adic digits of (¢7*)n(95%)n---(9;°7")n exceeds 2log @ and that of (g[')
exceeds 4r. Let m be the h-length of (97*)n(92)n-..(97*)n and kr + | with
0 <! < r the h-length of (¢;*)». Hence we require

k>4 and m>2logQ+kr+1. (7

We know by the periodicity of the h-adic expansion of P/Q that there exist
integers dy and b with 0 < b < A" such that

hmg = Ry 4 BhT 4 bR 4 bR 4 )

hkr+l

_ kr+l
=dih +b— 1
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On the other hand, there exists an integer do such that
0< | hma —dohFrtt — g | < 1.

Notice that hkr+=1 < gl < pkr+l Pyt d = d; — dy. It follows that |d| > 1
implies

P hkr+l ) .
g a"'@"Z'dlh’kTH_‘bhr_l"g?l _1thr+_ (8)
We now assume |d| < 1. Then we have
™ a—£ > (dhkrHt — g™ 4 p s -1
Q|- * hmr—1 '
Ifd+ h—,b_—l < ’—37, then we obtain
m Pl ni pkrel—2 k412
h a—a >gt—h —-1>h —-1. 9)
Ifd+ h_rb:f > FI;, then we write
hma—E ni h’"“(dh’—d+b)_1_1
Q™™ g (hm = 1) '

By C4, Cs, ..., we shall denote effectively computable positive numbers depend-
ing only on g and h. By Lemma 3 with é = 0.1, we have

r —
’(kr + 1) logh — n;logg; + log @#I > (%O)@ logA o—B/10

where A < 2h" and B = max(kr + 1, n;) < (kr + [)max(1,logh/log g;).
Hence, using that |z — 1| > C5|log z| for z > Flf,

) hkr+l dh" —d+b
Og gn1 ‘ hr - 1

2
> Cg hkrH-1p=Cor e—%(kr+l)§%§—; —1>Cs R3kr+D—Cer _ 1

h™ > Cs9

oL
Q

-1

Therefore
hm

a— g’ > ptkr+l) (10)

provided that k > C; > 4. In view of (8) and (9) inequality (10) holds inde-
pendently of the value of d whenever k > C5.
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Let ¢ be the smallest integer > 1 such that n; > C7Q. There exist positive
numbers Cg and Cg such that the h-length of g;.” is in between Cgn; and Con;
for j = 1,2, .... Hence the h-length of the concatenation (g7 )n(952)h---(9:-7")n
is at most Cyn?_,. Thus by the conditions on n;,

m < Co(n?_, +ns) < Co(1 + Co)n?_; < CroQ?.

On substituting this estimate into (10) we obtain the inequality claimed in
Theorem 2. Furthermore (7) is satisfied, since k > C7 >4 and m — (kr + 1) >
ni_1 > (n;/Co)/? > C11QY? > 21log Q for Q > Qo. For Q < Qo we can adjust
the constant C, if necessary.

3. Some general results. Let a be a rational number in (0,1) and h an
integer with h > 2. Let the h-adic expansion of a be given by

a = 0.a1a20a3... .

Then the sequence {a;} is periodic. Let r be its minimal period. Let S be a
set of positive integers. Let {s;}32, be a sequence with terms from S such that

a = 0.(s1)n(82)n(s3)n-.- - (11)

Lemma 4 If the sequence {s;}32, is not periodic, then there exist two strings
(t1,%2,.-sts) and (u1,ug,...,ux) of elements of S with t1 # uy and t, # uy
such that

(t)n (t2)n - (te)n = (w2)n (u2)n - (Ur)n- (12)

Proof Choose M so large that am4r = a4 for m > M. By the box prin-
ciple there exists an [ with 0 < | < r such that ag,4; is the first digit of
the h-adic expansion of some (s;)p, in (11) for infinitely many integers k. Let
agr+1 With Kr +1 > M be the first digit of (s7)n. Let U be the small-
est positive integer such that (s7)p(s741)n--(ST3v—1)r has h- length Lir di-
visible by r. Since {s;}{2, is not periodic, there exists an integer K’ > K
such that ag -4+ is the first digit of (sy)n, but that not sy = sy,sr41 =
SV41y -y ST+U~1 = Sv+U—1. Let W be the smallest positive integer such that
(sv)n(sv+1)n---(sv+w—1)r has h-length Lor divisible by r. Then the con-
catenation of Lo strings (sT)r(s7+1)h---(ST+U~1)r €quals the concatenation of
L, strings (sv)a(sv+1)n---(Sv4+w—1)n, since both are L;Ly periodic parts of
h-length r of a, but the corresponding strings are unequal,

(3T7 ST+41y+-sST+U—-1,8T ST+1, ) 7& (SV’ SV 4153 SVHW 1,8V, SV +1, )

By deleting on both sides the equal elements from the beginning as well as from
the end in both strings, we obtain two strings as claimed in the lemma.
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Lemma 5 If in the above notation S = {o,7} with o < 7 and {s;}2, is not
periodic, then the h-lengths of o and T are divisible by r.

Proof By Lemma 4 there exist strings (¢1,t2,...,tx) and (u1,us, ..., uy) of ele-
ments of S with ¢y < u; and t,; # uy such that (12) holds. Hence t;, = o,u; = 7.
If (6)n = biba..bs and (7)n, = cicp...ct, then apparently by = ¢;, by =
€2,...,bs = cs. Since ty is either ¢ or 7, we find that the digits of (7), are
purely periodic with period s. Let v be the minimal period of (¢}, with v|s.
Then v is also a period of (7)r. Let t = Ks+ L with 0 < L < s. Suppose
L > 0. Since uy is either o or 7, we see by comparing both sides of (12) that
by =bry1,b2 = bpye,...,bs = bp4s where the indices have to be read modulo s.
This implies that L is a period of (¢), and v|L. It follows that v|t. Since the
h-adic expansion of a is a concatenation of o’s and 7’s, v is also the minimal
period of the h- adic expansion of a. Thus v = r and the h-lengths of o and 7
are both divisible by r.

4. Proofs of Theorems 3 and 4 First Theorem 3. Let r be the minimal
period of the h-adic expansion of a. Let M be so large that am4r = ay for
m > M and that every g;** with i > M is a limit point of {g"*}$2,. According
to Lemma 4 applied to {g*}32,, there exist two strings

nr Nr41 ny ny nv4+1 nw
(gT ’ gT+1 »'"agU ) and (gV agv+1 a"'agW

with M < T < U <V < W such that g77 # gy¥ and g}V # gy whereas

(97 (9r3i n -+ (957 )n = (90" )n (G754")-- (90" -

Suppose g;;¥ < gy (The case g;¥ > gy is similar.) Let Lo be the h-length
of g;¥. Then

v =gp¥  (mod hlv).
This proves (a). Now suppose g7 < gy¥. Let Ly be the h-length of g7 and
Ly the h-length of gi;. Then

0< g(;v — plo—L1 g?"r < pLl2=L1

Hence
0< hL1 gev _ hLz g;l"r < th
which is (4). This proves (b).
Finally, the proof of Theorem 4.
<= From some M on {a;}32,, is only composed of (¢{*)s and (g;lj Yn. By (5)
both g and g}” have h-lengths divisible by r and consist of concatenations

of (b)n’s. It follows that {a;}$2,, is purely periodic with period 7. Hence a is
rational.
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= Suppose a is rational. Choose M and r so that {a;}2,, is purely periodic
with minimal period r and is composed of (g;'*)s and (g;” }n only. By Lemma
5 the h-lengths of both (g;**)s and (g;l")h are divisible by 7. Suppose (g;*)
consists of the concatenation of k periodic cycles (b), of length r. Then (g;j In
consists of an integral number of (b)3’s too, ! say. Now (5) follows. Obviously
b < h". Furthermore b > h"~1, since the h-length of ¢ is divisible by r.
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Hypergeometric Functions and Irrationality Measures

CARLO VIOLA

1. Some arithmetical properties of the values of suitable hypergeometric func-
tions at special rational points, and in particular the irrationality measures of
such values, have been extensively studied during the last decades. The ref-
erences at the end of this note represent a (largely incomplete) list of papers
dealing with this or related subjects. Essentially, one considers Padé-type ap-
proximations to the hypergeometric functions involved yielding especially good
rational approximations at suitable rational values of the variable. In several
interesting cases, the irrationality results obtained through this general princi-
ple can be improved by eliminating common prime factors of the values of the
approximating polynomials at the points considered. This elimination method
originated in Siegel’s work [18], and received new attention after Chudnovsky’s
paper [7].

The usual way of applying Siegel’s elimination method is based on the
analysis of the p-adic valuation of suitable binomial coefficients. Instead of
this, the possibility of using the p-adic valuation of the gamma-factors occur-
ring in the Euler-Pochhammer integral representation of the hypergeometric
functions ,+1Fy, together with the symmetry properties of these functions,
seems to have been generally overlooked. In Rhin and Viola’s paper [16]
this idea is combined with a group-theoretic approach, thus yielding sym-
metric statements about the p-adic valuation of rational approximations to
¢(2) =302 n"2 =n%/6 = 3F,(1,1,1;2,2;1), and hence an improvement on
the irrationality measure of this number previously obtained by Hata [11].

In this note we show how the analogue for one-dimensional Euler—Poch-
hammer integrals of the method developed in {16] can be applied to obtain very
easily good irrationality measures for the values of the logarithm at rational
points (see the inequality (16) below). Although the group structure underlying
the one-dimensional case is almost trivial (see the remark at the end of this
paper), our method yields the best known irrationality measures of a class of
logarithms of rational numbers (roughly, when the rational numbers have either
height or distance from 1 small enough). As a special instance, we get a simple
proof of the best known irrationality measure of log 2, namely Rukhadze’s result
3.89139978 (see [17]).

For special choices of our parameters, the estimate (16) below coincides with
the inequality given in Theorem 2 of Heimonen, Matala—aho and Vaandnen’s
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recent paper [13]. These authors consider integrals involving Legendre-type
polynomials, and apply Siegel’s method using the p-adic valuation of products
of binomial coefficients. The proof of our inequality (16) appears to be simpler
than that of Theorem 2 of [13], and it is interesting to compare the two methods.

An alternative approach to the search for irrationality measures of loga-
rithms of rational numbers is due to Amoroso [2]. Amoroso’s paper is inde-
pendent of Siegel’s method, and combines the properties of weighted integer
transfinite diameters of suitable real intervals with a method introduced by
Dvornicich and Viola (8} and Rhin [15] independently.

2. Let h, j, [ be integers satisfying A > max{0, —{}, j > max{0, I}, and let
z> —1, z # 0. Define

-2V d
= htitly max{0, -} 1-2) T
Ih, gy b 2) = 2 (1+2) / (1+z2)i~t1+z2 (1)
With the change of variable 1 4+ xz =t we obtain
142z _1\h iy
I(ha j7 K Z) = (1 + z)max{o,_[} (t 1) (1 +z t) ﬁ
1 ti—1 t
Hence
hog .
I(h’1 ja l; Z) = (1 + z)ma.x{O, _l} Z Z (_1)h+J—k—m
k=0 m=0
h j m 1+2 bt
(oo
=a(l +2) + b(1 + 2) log(1 + 2),
where
h i 5 J
a(l = _1)hti-k-m
ar9=3 3 () ()
= mgkt
(1 -+ z)max{k, k+1} _ (1 + z)max{m, m—1}
* k+l-m (2)
and

b(1 + 2) =(—=1)PHi~t (1 4 z)max{0:1}
min{h, j—1}

" k=m:;{0, y <Z> (k + l) 1 +2)". (3)
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Let d, =lcm.{1,2,...,n}. If we define
M=max{j-1,h+1},
we plainly have
dya(l+2)€Z1+2], bl+2z)eZl+z]. 4)
Note that b(1 + 2) is easily expressed as a contour integral, since, for any ¢ > 0,

L/ E-DrA+2z-2t) dt
2mi [t|=e ti-1 t

= Z EJ: 1)Hi—k-m (Z) <;)(1 +ym % /|t|=gtk+z—m_1dt

=0 m=0
. min{h, j—1} 3 j
= (—1yh+i—l ! k
(-1) a+2r > (k)<k+l)(1+z) .
k=max{0, -1}

Therefore

1
— max{0, -1} _~
b(l+2)=(1+2) 5

/ltl E-DM1+z-t) dt 5)

-t t’
We now apply the Euler-Pochhammer integral representation

I'(v) e () M
LB T(y~8) Jo (1—zy)~

valid for Re v > Re 8 > 0, of the Gauss hypergeometric function

2oFi(e, By v ) = dz,

2F1(a7 /Bv Y5 y) Z (a)(r;)(ﬁ) 3:1_7;,

n=0

where the Pochhammer symbols are defined by

©o=1, ©n=¢E+1)-((+n—-1) (n=12,...)
Since
2Fi(e, B5 v y) = 2F1(B, o5 75 v),
for Re v > max{Re «, Re 8} and min{Re «, Re 3} > 0 we obtain

[ERaa, Org) e ey
0 (1 —azy)> [(o)T(y - a) (1—zy)?

dx.
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Choosinga=3j—-1+1,8=h+1,y=h+j+2,y=—z, we get

. h! ! , )
IU%],LZ)—-Kfjjﬁqujﬁij'—l,h4-hl,2) (6)
In order to use (6) we need
M* = max{h, j} <M =max{j — [, h + 1}, (7)

which we shall henceforth assume. Note that (7) implies

j-l<j<h+l, ifl1>0,
h+l<h<j-1, ifl<0,
whence
h+1, ifl1>0, g
—{j—l, if 1 <0. ()
From (2), (3), (7), and (8) we obtain
dega(l+2)<max{j—l,h+l}=M (9)

and
degb(1 + 2) < max{h, j} = M* < M. (10)

We now take a rational number z = r/s, with integers r and s satisfying
r#0,s>1,r>—s,(r, s) =1. By (4), (9), and (10) we have

sMdya(l +7r/s) € Z, sMb(1+1/s)eZ. (11)
Forn=1,2,... let
I, = I(hn, jn, In; r/s) = ap + by log(l + r/s)

and
I =1((j — On, (h+D)n, In; r/s) = ay, + b}, log(L +1/5s).

The transformation formula (6) yields
(7 = On) (R + Dn)lan = (hn)! (jn)! a.
Multiplying by sM"dy;,, we get

(G = On)t((h + Dn)! A, = K(hn)! (jn)! Ay,
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where, by (11), A, = sMdpnan, A = sMdpynal, and K = dprp/dpger, are
integers since M* < M. By standard arguments (see [16], pp. 44-45), any
prime p > v/ Mn for which

(G =Dl +[(h+Dw] < [hw] + [jw], (12)

where w = {n/p}, is such that p|A,.
Let 2 be the set of w € [0, 1) satisfying (12), and let

An = H b, Dn = %@
p>vMn ™
{n/p}es
We have sM"Dpa,, = An/A, € Z. By (7), if w < 1/M then w < min{1/h,
1/5}, whence [hw] = [jw] = 0, w ¢ Q. Thus p|A, yields w = {n/p} € Q,
n/p>w > 1/M, p < Mn, p|dpn. Hence D, € Z. Also, by (11), sM"b, € Z.

In order to get an irrationality measure of log(1 + r/s), we can apply Lemma
4.3 of {16] to

sMrD,. I, = s™™D,.a, + s*"D,b, log(1 +7/s).

Again by standard arguments ([16], p. 51) we have

lim —l—log(sM”Dn) =Mlogs+ M — / dy(z), (13)
Q

n—oo N

where ¢(z) = I"(z)/T'(x).
Let o and x; be the stationary points # 0, 1 of the function

zh(1-z)7
fa) = LD
(1+ (r/s)z)
i.e., the solutions of
r(h+10z® + (s(h+5) —r(h +1—j))z — sh =0,

with 0 < g < 1 and 1+ (r/s)zy < 0. Then, by (1),

lim L log L] =(k + j)log |r /3|

Jim = log || =(h + 5) log|r/s

+ max{0, —{}log(1 + r/s) + log f(zo), (14)
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and, by (5),

%log |b,} <max{0, —{}log(l +17/s)

1+ o)1 +r/s+ o)
oIt '

With the change of variable p = ~1 — (r/s)z we obtain

in 1
+ g log

h J
i log L+ 7/5 +0)
2>0 gﬂ_l

= log (Ir/sI"*| f(z)]) -
Hence

lim sup 1 log |b,,| <max{0, —{}log(l +r/s)
n—oo N

+ (h+ ) log|r/s| + log|f(z1)]. (15)

Let p(a) denote the least irrationality measure of an irrational number c.
Let

U = log|f(x1)| — log f(zo)
and
V = —log f(xo) + /de(x) - M(1+1logs)
— (h+ j)log|r/s| + min{0, I}log(1 +r/s).

From (13), (14), (15) and Lemma 4.3 of [16] we obtain

u(log(1 +7/5) < 7, (16)

provided that V' > 0.
In the case r = s = 1 we have

log | f(z1)| — log f(zo)
—log f(zo) + Jod¥(z) ~h -1

for any integers h, j, I suchthat h >0, >1>0, j < h+! and

p(log2) < (17)
—log f(zo) > h+1— /deﬁ(x).

With the choice h = 7 =7, [ =1, the set Q is the union of the intervals

78 33, [22), 38, 59, [53)
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and we have
/ dy(z) = 2.31440700. . .,
Q

—log f(xo) = 11.98832512..., log|f(z;)| = 12.53812524. ...

Thus the right side of (17) is < 3.89139978, i.e., Rukhadze’s irrationality mea-
sure of log 2 ([17]).

In the special case h = j > | > 0, |r| < s, the above inequality (16) is a
reformulation of Theorem 2 of [13] (the parameter o appearing in Theorem
2 of [13] is 1 — I/h in our notation). The table given on p. 186 of [13] for
the irrationality measures of logarithms of several rational numbers should be
compared with the numerical results obtained by Amoroso [2].

Remark With the change of variable x = (1 — u)/(1 + uz) the integral (1)
becomes

V(i —w)t  du
0o (1+uz)pt 1+uz

I(h’7 j’ la Z) = Zh+j+1 (1 + z)max{O,l}

= I(]) hy _l; Z).

From this and the transformation formula (6) we see that in the present case
the analogues of the permutation groups T and & considered in [16], Section
3, are isomorphic to the additive groups Z/2Z and Z/2Z x Z/2Z, respectively.
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Forms in Many Variables
TREVOR D. WOOLEY*

1. Introduction A system of homogeneous polynomials with rational co-
efficients has a non-trivial rational zero provided only that these polynomials
are of odd degree, and the system has sufficiently many variables in terms of
the number and degrees of these polynomials. While this striking theorem of
Birch [1] addresses a fundamental diophantine problem in engagingly simple
fashion, the problem of determining a satisfactory bound for the number of
variables which suffice to guarantee the existence of a non-trivial zero remains
unanswered in any but the simplest cases. Sophisticated versions of the Hardy—
Littlewood method have been developed, first by Davenport [4] to show that 16
variables suffice for a single cubic form, and more recently by Schmidt [10] to
show that (10r)% variables suffice for a system of r cubic forms. Unfortunately
even Schmidt’s highly developed version of the Hardy-Littlewood method is
discouragingly ineffective in handling systems of higher degree (see [11, 12]).
The object of this paper is to provide a method for obtaining explicit bounds
for the number of variables required in Birch’s Theorem. Qur approach to this
problem will involve the Hardy-Littlewood method only indirectly, being mo-
tivated by the elementary diagonalisation method of Birch. Although it has
always been supposed that Birch’s method would necessarily lead to bounds
too large to be reasonably expressed, we are able to reconfigure the method
80 as to obtain estimates which in general are considerably sharper than those
following from Schmidt’s methods (see forthcoming work {15] for amplification
of this remark). Indeed, for systems of quintic forms our new bounds might,
at a stretch, be considered “reasonable”.

In order to describe our conclusions we require some notation. When &
is a field, d and r are natural numbers, and m is a non-negative integer, let

(m

vd,r)(k) denote the least integer (if any such integer exists) with the property
that whenever s > vfi"’:)(k), and fi(x) € k[z1,...,75s] (1 < i < r) are forms
of degree d, then the system of equations fi(x) = 0 (1 < i < r) possesses a
solution set which contains a k-rational linear space of projective dimension
m. If no such integer exists, define vt(;,':)(k) to be +00. We abbreviate v((i?z(k)
to vg,r(k), and define ¢4 (k) in like manner, save that the arbitrary forms of
degree d are restricted to be diagonal.

* Packard Fellow, and supported in part by NSF grant DMS-9622773
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In view of the real solubility condition it is plain that vg’mr) (Q) can be finite
only when d is odd. The simplest interesting examples to consider are therefore
systems of cubic forms. In §3 we show how, for an arbitrary field k, one may
bound vg;f)(k) in terms of ¢3 (k).

Theorem 1 Let k be a field, let m and r be non-negative integers with r > 1,
and suppose that ¢3 (k) is finite. Then

v (k) < r3(m+ 1)% (g, (k) + 1)°.

We remark that a modification of our method, which we outline in §3 below,
yields a bound of the shape

v (k) < (m +1)°, (1.1)

where « is any number exceeding 1(5 + v/17) = 4.56155. .., and the implicit
constant depends at most on k, 7 and a. Unfortunately the state of knowl-
edge concerning upper bounds for ¢4 (k) currently leaves much to be desired.
Indeed, the only fields for which detailed investigations have thus far been exe-
cuted are the local fields and Q. Since we have considered local fields elsewhere
(see [14]), we restrict attention to the case k = Q, noting merely that recent
developments in the theory of the Hardy-Littlewood method over algebraic
number fields, when applied within Theorem 1, should yield useful bounds on

vgj:)(k) also when k is an algebraic field extension of Q.

Corollary Let r be a natural number, and let m be a non-negative integer.
Then

v§(Q) < (90r)3(log(27r)) (m + 1)°.

For comparison, Lewis and Schulze-Pillot [7, equation (4)] have provided an
estimate of the shape

v;(;t:)(Q) < r(m+1) +r3(m + 1)5, (1.2)

and have also indicated how to refine the latter bound for smaller m to obtain

'Ué’;) (Q) < r¥(m+1). Thus the bound provided by the corollary to Theorem
1, which has strength

vi (Q) <. r**e(m +1)%,
is stronger than those of Lewis and Schulze-Pillot only for

rU3e o m1 <, 134,
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Meanwhile, the improvement of our basic bound noted in (1.1) above yields a
bound for v(m)(Q) superior to (1.2) whenever m is sufficiently large in terms of
r (note, however that a similar improvement may be put into effect in the work
of Lewis and Schulze—Plllot) Also, when r = 1, work of Wooley [13, Theorem
2(b)] shows that v’ {m)(Q) < (m +1)2, whence v(m) (Q) < (m+1)*. Of course,
when m = 0, so that one is seeking only the existence of rational points on the
intersection of r cubic hypersurfaces, Schmidt’s bound v3(Q) < (107)°® (see
[10, Theorem 1]) is superior to the conclusion of the corollary.

In §4 we move on to the next most interesting class of examples, considering
systems of quintic forms. Without any hypotheses concerning the behaviour
of ¢3.,(k), unfortunately, the bounds on v(m)(k) stemming from our methods
seem too complicated to merit mention. We therefore restrict attention to the
rational field Q. The sharpest estimates that we are able to derive for vg’:) (Q)

follow by exploiting an estimate of Lewis and Schulze-Pillot [7] for vgj:) (Q)
within the methods laid out in §2.

Theorem 2 Let m and r be non-negative integers with r > 1. Then

vé',?:)(Q) < exp (1032 ((m + 1)rlog(3r))" log(3r(m + 1))) ,

where
_ log 3430

= 5.87199....
log4

In particular, vs »(Q) = o(e™).

For comparison, Schmidt [12, equation (2.5)] has shown that for a suitable
positive constant A one has vs (Q) < exp(exp(Ar)). Thus our new result
replaces a doubly exponential bound by one which is essentially single expo-
nential.

We remark that when k is a field for which ¢;(k) < oo for 2 < ¢ < d, as
is the case, for example, for Q, and its extensions, then Wooley [14, Theorem
2.4] has shown that

d-1 )
o (k) < 2(2gak) +mr)? " [ 0k) + 1)

(this sharpens an earlier result of Leep and Schmidt [6]; see also Schmidt [9]
for a sharper conclusion for systems of cubic forms when m = 0). Thus the
assumption of a suitable local to global principle would lead, for odd d, to the
bound

d—
Va, 'r) (@) = sup U,g?:) (@p) <4 (r? +mr)? :

p prime
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a conclusion substantially stronger than those described in Theorems 1 and 2.
In view of local obstructions, of course, one has the lower bound v,4,-(Q) > rd?,
and some workers would even conjecture that the latter lower bound holds with
equality for odd d.

For values of d larger than 5 our bound for v4,(Q) is indescribably weaker,
and our conclusions are considerably more complicated to explain. We will
discuss such bounds, and the relevance of remarks of Schmidt [12, §2] in this
context, on another occasion. Perhaps it is worth noting at this point, however,
that subject to non-singularity conditions, stronger bounds are known for the
number of variables required to solve systems of equations than have been
derived herein (see Birch [2]). The point of the present paper, like that of
Birch’s original work {1], is to provide such conclusions without any hypotheses.

We describe our version of Birch’s elementary diagonalisation argument in
§2, this forming the core of our methods. In broad outline, our strategy is mod-
elled on the original argument of Birch. Our superior conclusions stem from
two sources. Firstly, by adapting an argument used by Lewis and Schulze-
Pillot [7] to generate large dimensional linear spaces of rational solutions to
systems of homogeneous cubic equations, we are able to efficiently generate
large dimensional rational linear spaces on which a system of forms becomes
diagonal. Roughly speaking, our argument doubles the dimension of the latter
linear spaces with each iteration of the method, thereby leading to an expo-
nential advantage over the methods available hitherto. Secondly, since we are
able to apply this latter approach to a system of many forms simultaneously,
we are able to exploit current knowledge concerning the solubility of systems of
diagonal forms in order to avoid the inductive approach previously employed,
in which large dimensional rational linear spaces of zeros of a single form are
used to solve and remove one form at a time from the system. This second idea
dramatically improves the quality of our conclusions.

Throughout, implicit constants in Vinogradov’s notation <« and > depend
at most on the quantities occurring as subscripts to the notation.

The author gratefully acknowledges the extraordinary generosity and hospi-
tality of the organizers and participants of The Taniguchi International Con-
ference on Analytic Number Theory, during which time many of the ideas
underlying this work were refined. The author is grateful to Professor Moto-
hashi, in particular, for his benign tolerance and encouragement during the
preparation of this paper.

2. Reduction to diagonal forms In this section we establish a reduction
technique which, by rational change of variable, simplifies arbitrary systems of
homogeneous polynomials into diagonal ones, albeit in far fewer variables. In
order to fully implement our reduction argument we require some additional
notation. Given an r-tuple of polynomials F = (F}, ..., F,.) with coefficients in
a field k, denote by v(F') the number of variables appearing explicitly in F. We
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are interested in the existence of solutions, over k, of systems of homogeneous
polynomial equations with coeflicients in £. When such a solution set contains
a linear subspace of the ambient space, we define its dimension to be that when
considered as a projective space. When d is a positive odd integer, denote by

gém) (rasrd—2,...,71; k) the set of (rqg +rg_2 + - - - +r1)-tuples of homogeneous
polynomials, of which r; have degree i for i = 1,3,...,d, with coefficients in

k, which possess no non-trivial linear space of solutions of dimension m over
k. We define Dl(im) (rdyrd—2,-.-,71; k) to be the corresponding set of diagonal

homogeneous polynomials. We then define w((im)( )= wd )(rd, Td—2,---,71; k)
by
w‘(im)(rd,rd_g, N N = sup v(g),

g8EGY™ (rayrac 2, yr1ik)

and we define qS((im) (r)= ¢flm) (rgsTd—2,...,71; k) by

¢§lm)(7'd,7'd_2,...,7'1;k) = sup I/(f)
fED‘(im)(’r‘d,’rd_g,...,'l‘l;k)

We observe for future reference that both w;m)(r) and quim) (r) are increasing
functions of the arguments m and r;. For the sake of convenience we abbreviate

wgm)(r,O, -, 0;k) to vy r)(k) and note that w(o)(r, 0,...,0;k) = vgr(k). We
also abbreviate ¢fim) (r,0,...,0;k) to ¢,(1',':)(k), and write @q (k) for ¢¢(£Z(k).

Next, when m > 2, we define ’Hfim) (r; k) to be the set of r-tuples, (F},. .., F.),
of homogeneous polynomials of degree d, with coefficients in &, for which no
linearly independent k-rational vectors ey,...,e,, exist such that F;(t;e; +

-+ tem) is a diagonal form in ty,...,t, for 1 < 4 < r. We then define

(m) (r) = B¢ (r; k) by

@™ (r;k) = sup v(h).
heH{™ (r)

Further, we adopt the convention that w(l) (r; k) = 0. Note that w(m) (r; k) isan

increasing function of the arguments m and r. Moreover, when s > w(m) (r; k)
and Fy,..., F, are homogeneous polynomials of degree d with coefﬁc1ents in k
possessing s variables, then there exist linearly independent k-rational vectors
e1,...,en, with the property that Fi(tje; + - -- + tmen) is a diagonal form in
t1,.. oty for 1 <i <.

Lemma 2.1 Letd be an odd integer with d > 3, and let r, n and m be natural
numbers. Then
@™ (13 k) < s+ wMR; k),
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where
M = w(n)(r; k), s=1 +w(N) 2(S;k), N= ~(m)(r;k),

and for 0 <u < (d—1)/2,

s+d—2u—2 n+d—-2u—-2
R2“““T< d—2u—1 ) and 32"+1_T< d—2u—1 )

Proof Write § = (d — 1)/2, and take N to be an integer with N' > s +
wélilz) (R;k). For 1 < j < r, consider forms F; of degree d, all having N
variables. For 1 < j < r and 0 < u < § define the polynomials G;,, and H;,,
through the expansion

)
Fily +1%) =Y (Giu(y, 2)t7F! + Hyu (v, x)t47271) (2.1)

u=0

valid for each x,y € k. Notice that Giu(y,x) is a form of degree 2u + 1 in x,
and of degree d — 2u — 1 in y. Also, H;.(y,x) is a form of degree d —2u —1 in
X, and of degree 2u+1 in y. Let T be an arbitrary, but fixed, k-linear subspace
of kN of affine dimension s, and let ay, ..., a, be a basis for T'. Let U be any
subspace of KV such that T@U = k. Consider an arbitrary element of T, say
Yy = u1a; + - - - + u,a,, and substitute this expression into G, (y,x). We find
that the latter polynomial becomes a form of degree d — 2u — 1 in u;,...,us,
whose coefficients are forms of degree 2u+ 1 in x. Moreover, following a simple
counting argument, one finds that the number of such coefficients of degree

2u+1lis
(d-—2u—-1)+(s-1)
< d—2u—1 )

Thus, as we consider all G;,(y,x) with 1 < j < r, we find that the total

number of coefficients of degree 2u + 1 which arise is Rgy41 (0 < u < 6).

Then since N — s > w((ilg)(R; k), we may conclude thus far that there exists a

k-linear subspace, V, of U, with projective dimension M, on which all of the
above coeflicients of degrees 1,3, ...,d — 2 vanish. Moreover, for each j one has
Gis(y,x) = F;(x). Consequently, for each x € V and each y € T one has

Fily +1x) = t4F;(x +ZHau (y,x)t* 21 (1<j<r). (2.2)
u=0

Next, since M +1 > w ~(n) (r; k), we deduce that there exist linearly indepen-
dent vectors by,...,b, € V with the property that for each t;,...,t, € k one
hasfor1<j<r that Fi(tiby + - +t,b,) is a diagonal form in ¢y,...,¢,.
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Let W be the linear subspace of ¥V spanned by by,...,by,, and consider an
arbitrary element of W, say x = v1b; + - -+ + v, b,. On substituting the latter
expression into H;,, (y, x), we find that the latter polynomial becomes a form of
degree d — 2u — 1 in vy, ..., v,, whose coefficients are forms of degree 2u +1 in
y. Moreover, following a simple counting argument, one finds that the number
of such coefficients of degree 2u + 1 is

(“nnre)

Thus, as we consider all Hj,(y,x) with 1 < j < r, we find that the number

of coefficients of degree 2u + 1 which arise is Sgu4+1 (0 < u < §). Then since

s > w,(iN)z(S;k), we may conclude that there exists a k-linear subspace, X,

of T, with projective dimension N, on which all of the above coefficients of
degrees 1,3, ...,d — 2 vanish. Moreover, for each j one has H;s(y,x) = F;(y).
Consequently, for each y € X and each x € W one has

Fily +tx) = t3F;(x) + Fi(y) (1<j<r). (2.3)

Thus, since the affine dimension of X is N+1 and N+1 > wc(lm) (r; k), we deduce
that there exist linearly independent vectors cy, ..., ¢y € X with the property
that for each s3,...,8, € konehasfor1 <j<r that Fi(s1€1+ -+ + 8mCp)
is a diagonal form in sy, ..., 8,,. Consequently, when 1 < j <r,

Fi(tibr + -« +tpbp + 8101 4+ -+ + SmCm)
is a diagonal form in ¢y,...,t,,51,...,5m, whence ﬁé”"’m)(r;k) < N, and the
lemma follows immediately.

Recalling the trivial result G‘(il)(r; k) = 0, it is apparent that Lemma 2.1
may be exploited inductively to obtain bounds for ﬁz'd )(r; k) for arbitrary m.
We now indicate how to bound v )(k) in terms of w(") (r; k) for suitable n.

Lemma 2.2 Let d be an odd positive number, let r be a natural number, and
let m be a non-negative integer. Then

ogy (k) < @3 (ri k),

where M = (m + 1)(¢q,r (k) + 1).

Proof Take N to be an integer with N > w(M)(r;k), and for 1 < j < r,
consider forms F; of degree d, all having N variables. By the definition of

ng) (r; k), there exist linearly independent k-rational vectors ey, ...,ep with
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the property that whenever ¢;,...,tp € k, one has for 1 < j < r that the form
Fj(tie1 +---+tmen) is a diagonal form in ¢y,...,tn. Let ¢;; (1 <i<r, 1<
j < M) be elements of k such that

M
Filtrer + - +tuen) = Y _cytd (1<i<r). (2.4)
j=1

Write ¢ = 1 + ¢q,r(k). We observe that, by the definition of ¢4, (k), for

1=0,1,...,m, each of the systems of equations
(+1)¢
Y etd=0 (1<i<r)
j=lp+1

possesses a non trivial k-rational solution. Consequently, there exist linearly
independent k-rational vectors ag,...,a,, such that for each wug,...,u,, € k
one has

Fi(uwoap + -+ uman) =0 (1<j<r).

Thus the system of equations F;(x) = 0 (1 < j < r) possesses a linear space

of solutions of projective dimension m, whence v, r)(k) < N. This completes
the proof of the lemma.

It is now clear how to bound vd (k) in terms of w (s k), for suitable n and
s depending on d, m and r, provided of course that we have sufficient knowledge
concerning the solubility of systems of diagonal equations. We turn to the
latter issue in §3. Our next lemma completes the preliminaries necessary to
facilitate our induction by bounding 'w (sd 2,...,81; k) in terms of o) (k)

d-2,r
and 'wc(ip_) 4(t; k) for suitable r, p and t.

Lemma 2.3 Let d be an odd positive number with d > 3, and let r1,r3,...,74
be non-negative integers with rq > 0. Then for each non-negative integer m
one has

wém)(rd,m—z, oo T k) < wffg(rd-z, T k),

where M = vfl":i(k).

Proof Take N to be an integer with N > w;{lz)(rd_z, ...,71;k). Consider
forms F;; of degree i for 1 < j <r; and i = 1 3,...,d, all having N variables

and coeflicients in k. By the definition of wd 2( ; k), there exists a k-linear
solution set of the system of equations

Fij(x)=0 (1<j<r,i=13,...,d-2)
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with projective dimension M. Let ey,...,ep be a basis for the latter space of
solutions. Then for each tg,...,tp € k one has

Fij(toeg + - +tpmem) =0 (1<j<r, i=1,3,...,d-2).

Moreover, for 1 < j < 74, each of the forms Fg;(toeo + - - + tpen) is a form

of degree d in the M + 1 variables tq,...,tp. Thus, since M +1 > vfﬂl (k),
there exists a k-linear solution set of the system of equations

fdj(toeo +--- +tMeM) =0 (1 <j< Td)

with projective dimension m. Let ay,...,a, be a basis for the latter space of
solutions. Then for each ug, ..., %, € k one has

Fij(voao + - +umam) =0 (1<j<r, i=13,...,4d),

whence w,(im) (ra,T4—2,.-.,71;k) < N. This completes the proof of the lemma.

3. Systems of cubic forms Before embarking on our primary course, we
detour in this section to discuss the existence of rational linear spaces in the
solution set of systems of homogeneous cubic equations. This topic has been
addressed in considerable generality by Lewis and Schulze-Pillot (see [7]), and
more recently for a single equation in [13]. The conclusions of Lewis and
Schulze-Pillot rest on the deep work of Schmidt [10]. Our methods, although
elementary, yield superior conclusions to the aforementioned results whenever
the dimension of the linear space lies in an interval intermediate in size in terms
of the number of forms. We observe also that our methods apply in any field
k for which suitable upper bounds are available for ¢3 ,(k).

The proof of Theorem 1 We start by using Lemma 2.1 to bound Gé") (r; k)
as a function of n. Recall the notation of the statement of Lemma 2.1. Take
d = 3, so that Ry = r(*}') and $; = 'r(”‘z"l). We also take m = 1, so that

N = 1E§1)(r; k) =0 and

1
s=1+'w§N)(Sl;k)=1+51:1+r(n; )

Notice that when n > 2, one has s < rn?. Further,

W™ (Ry;k) =Ry + M = r<s ; 1) + @5 (r; k).

On inserting these estimates into Lemma 2.1, we find that

1 ~
@V (r k) < s +"(SJ2r ) + @ (r; k), (3.1)



370 T.D. Wooley

and hence when n > 2 that

@§n+l)(r; k) < @gn) (r; k) +rn? + %1"2712(7%2 +1)

< @M (ry k) + r3nt. (3.2)

Moreover, ﬁgl)(r; k) = 0, and hence by (3.1), on noting that when n = 1 one
has s = r + 1, we deduce that

r+2

@ (r;k) < 1+r+r< ;

) + @5 (r; k) < 5r8 < 2573, (3.3)

On applying (3.2), we therefore deduce that when n > 2,

n
@V (ry k) < r3 (5 + Z m4) < n’rd. (3.4)

m=2

On recalling (3.3), we conclude that @™ (r; k) < r3n5 for each positive integer
n.
Finally we apply Lemma 2.2, so that by (3.4) we arrive at the estimate

v§ (k) < r3(m + 1)° (g3, (k) +1)° .

This completes the proof of the theorem.

By altering the choice of m in the above argument we obtain the bound (1.1)
discussed in the introduction.

Theorem 3.1 Let k be a field, let m and r be non-negative integers with
r > 1, and suppose that ¢3 (k) is finite. Then whenever o > %(5 ++/17), one
has (

m

V() Kk (M +1)%.

Proof We form the hypothesis that for some positive number £, with 8 >
2(5+ V/17), one has

WM (r; k) < P, (3.5)
where here, and throughout the rest of the proof of this theorem, the implicit
constant depends at most on k, 7 and 3. We mimic the argument of the proof

of Theorem 1, but now take m = [n%#] + 1. Thus, in the notation of the
statement of Lemma, 2.1, we have

s=1+w™(S1:k) =1+ 8 + @™ (r; k),
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whence by (3.5) one obtains
s<n?+mf «n?

Next we recall that
ng)(Rl; k) = r(s -; 1) + ﬁ)'é") (r; k),
and thus deduce from Lemma 2.1 that
@™ (ry k) — @ (ry k) < 8% < 0t
A trivial induction now reveals that for each positive integer n,
@3 (r;k) < n®/m < n®~/%,

whence the hypothesis (3.5) holds with 3 replaced by 5—2/8. In view of (3.4),
we therefore conclude that the hypothesis (3.5) holds with 3 replaced by the
exponent 3, for any r € N, where 3, is defined by 61 = 5, and Br41 =5-2/5,
(r € N). After verifying that lim, .o 8- = 3(5++/17), the proof of the theorem
is complete.

In order to establish the corollary to Theorem 1 we will require an estimate
for ¢3 ,(Q). We record for this and future use the following lemma.

Lemma 3.2 Let d and r be natural numbers with d odd. Then

$4,r(Q) + 1 < 48rd®log (3rd?) .

Proof This is immediate from the corollary to Theorem 1 of Briidern and
Cook [3], the latter making fundamental use of the corresponding local results
of Low, Pitman and Wolff [8].

We note that older results of Davenport and Lewis [5] would also yield
reasonable, though somewhat weaker, conclusions when exploited within our
methods.

We are now in a position to prove the corollary to Theorem 1, which provides
an estimate for the number of variables required to guarantee the existence of a
rational m-dimensional linear space of solutions on the intersection of a number
of cubic hypersurfaces.

The proof of the corollary to Theorem 1 We apply Theorem 1, bounding
¢3.r(Q) by using Lemma 3.2. Thus

d3-(Q)+1< 64r log(27r),
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and hence
v (Q) < 6278 (log(27r))8(m + 1)°,

and the corollary follows immediately.

Since it is useful for our discussion, in the following section, of systems of
quintic forms, we record an explicit version of the bound of Lewis and Schulze-
Pillot.

Lemma 3.3 Letr be a natural number, and let m be a non-negative integer.
Then
w§M(Q) < (117) (m + 1) + 5073 (m + 1)°.

Proof We employ the bounds on v(m) (Q) used by Lewis and Schulze-Pillot
[7] in their proof of [7, inequality (4)] being careful to keep all intermediate

estimates explicit. In combination with Schmidt’s bound v3 B(Q) < (10r)® (see
[10, Theorem 1]), the argument of Lewis and Schulze-Pillot yields

2(0) < @) +3r Y (1@ + 307 )’
j=1

m
< (10r° +3r Y ((10r)° + 3rj% + 2)°,
i=1
and the desired conclusion follows with a modicum of computation.

4. Systems of quintic forms We now return to our major goal, that
of bounding vé';f) (Q). Once again the key to our argument is Lemma 2.1, and
again we make use of the estimate for ¢4, (Q) provided by Lemma 3.2. We begin

with a lemma which bounds w ~(") (r; Q) as a function of n and 7. The conclusion
of the lemma represents a compromise between strength and simplicity. We
remark on some possible improvements at the end of this section.

Lemma 4.1 For each non-negative integer j one has
@™ (r; Q) < (2rm2)3, (4.1)
where . .
m; =47 and oj = 3430°.
Proof We use induction to establish that for each j one has

émj)(r; Q) < Piri mg", (4.2)
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where m; = 47, and

34307 — 1 34307 — 1 34307 —1

- = B i = 17836 —————. (4.
3o 0 VT 9l g 4= 1786 (49)

Note first that (4.2) holds trivially when j = 0. We suppose next that (4.2)

holds for a non-negative integer j, and aim to establish that (4.2) holds with j

replaced by j + 1. Let r, n and m be natural numbers. Recall the notation of

the statement of Lemma 2.1, and take d = 5. Then

1
Sl=r<n+3)$rn4 and ngr(n;— )Srn"",

B; = 3982

4

whence by Lemma 3.3, on writing N = w5 )(r Q) and N; = N + 1, one has
that

s=1+w(5,8;Q) =148 + "’g?s(Q)
<l4rptae (11rn?)2 Ny + 50(rn?)3 Ny
< Cl(rn2)3(N15 + (rn?)10), (4.4)

where
Cr =111 45042 < €. (4.5)

Next, on writing M = wé") (r; Q) and M; = M + 1, one has from Lemma
2.1,

T (r;Q) < s +w§ (Rg, Ri;Q) = s+ Ry + v%l Q)
< s+rst+ (1rs?)11 My + 50(rs?)3 M7
< Ci(rs?)P (M7 + (rs?)19). (4.6)

On substituting from (4.4) into (4.6), we find that
g™ (r; Q)
< CIr?'n38 (NP + (rnz)lo)6 (Mi" + C20r"n120 (N + (rnz)m)zo)
< Oy (r351nd76 - pO1p 156 130 4 21,36 15 N30 | 181,156 175 (4.7)

where
Cy =25CT(1 + (2C1)%) < ™. (4.8)

First we take n = m in (4.7) to obtain

T (1) < 4, (FEImT 4 19 miSONJ0), (49)



374 T.D. Wooley

where we recall that Ny =1 +117§m) (r; Q). Next, on taking n = 2m and making
use of (4.9) in (4.7}, we deduce that

ﬁ)«él’»m) (,’_; Q) < 03 (7,1836m3536 + 7,536m936Ni380) , (4_]_())

where
Cs = C(1 + 8Cy)® (2576 + 2157 4 236) < 4967, (4.11)

Finally, on taking n = 3m and making use of (4.10) in (4.7), we conclude that
ﬁé4m) (r;Q) < Cy (r9261m17836 | 2761, 4836 3430) (4.12)

where
Cy = Co(1 +2C3)° (3976 4 3157 4 336) < 26330, (4.13)

Now recall the inductive hypothesis (4.2). We deduce from (4.12) and (4.13)
that

, \ 3430
ﬁé4m’)(T;Q) <C, (T9261m]17836 + T2761m;;836 (1 1 P m;ﬁ_,) )

; 17 4306,
< Cy(1 + 23430)¢34306;,.9261+34307; m] 83634306

. . 17836434306,
< 63982+3430ﬂ, T9261+34307] mj+1 + i

Then in view of (4.3) we deduce that

~(mjy1) . i ; 841
wy 2T (r; Q) < eﬂ’“’"‘y’“mjfn )

whence the inductive hypothesis follows with j replaced by j + 1. We may
therefore conclude that (4.2) holds for all non-negative integers j. Finally,
(4.1) follows from (4.2) with a little calculation.

It is now possible to bound vé';) (Q) by combining the bound for ¢5 ,(Q)
provided by Lemma 3.2 together with Lemma 2.2.

The proof of Theorem 2 By Lemma 2.2 one has

o™(@Q) < 38 (r; ),

where M = (m + 1)(¢5,,(Q) + 1). We may therefore apply Lemma 4.1 with

) log M
J_[log4]+1
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to obtain, in the notation of the statement of Lemma 4.1,
o (Q) < W™ (1;Q) < (2rm)*,
where

. log M
a; = 34307 < exp ((%gg—4 + 1) log 3430) < 3430M",

where x = (log 3430)/(log4). Thus we deduce that
log v{™(Q) < 10290M* log(32rM?).
But by Lemma 3.2 one has
#5,-(Q) + 1 < 6000r log(757),
whence, following a modicum of computation, one deduces that
log vét',f) (Q) < 1032 ((m + 1)r log(3r)) "~ log(3r(m + 1)).

This completes the proof of the theorem.

If, in the proof of Lemma 4.1, the conclusion of the corollary to Theorem 1
is applied in place of Lemma 3.3 to obtain a substitute for (4.6), one arrives at
an expression of the shape

T (r;Q) < (rs)*e M,

whence from (4.4} one deduces that

- —(m 85+¢
@& (r; Q) < (rm)°W (1 + @™ (s Q)) )
On taking n = 2m and making use of the latter bound in (4.7), one obtains

5 . 455+¢
w?m) (r; Q) <, (rm)°W (1 + wé )(T;Q)) )

Thus a theorem of similar shape to Theorem 2 may be established, save that
K is now replaced by any number exceeding

log 455

=5.57093....
log3

A further modest reduction in the permissible value of x would be made possible

by a suitable version of the bound vg:) (Q) < r¥(m + 1) claimed by Lewis
and Schulze-Pillot [7].
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Remark on the Kuznetsov Trace Formula
Eu1 YosHIDA

The aim of this note is to relax the condition for test functions appearing in
the Kuznetsov trace formula over the full modular group I' = PSL(2,Z). Non-
trivial bounds for Kloosterman sums play a crucial role in our method, and in
this respect our theorem is a consequence of the Weil estimate.

1. Statement of the result Let H = {z = 2 +iy € C: y > 0} be
the complex upper half plane equipped with the hyperbolic measure du(z) =
dxdy/y®. Let L*(I'\'H) be the set of all I-automorphic functions which are
square integrable with respect to du over the quotient I'\'H. This is a Hilbert
space with the inner-product

(frg) = /F erorol

Let {f;(2)};>1 be an orthonormal basis of the subspace composed of all cusp
forms in L2(I"\'H). We have the Fourier expansion

fi(2) =y* ¥ dj(n) Ko, (27|nly)e(na),

n#0

where e(z) = exp(2miz), and ;11 + rjz(rj > 0) is the corresponding eigenvalue
of the Laplacian. Let E(z,s) be the Eisenstein series. We have the Fourier
expansion

%I‘(s - %)C(Zs -1) e

Bles) =0+ ™ e )

+y? ) @u(s)K, 3 (2ninly)e(nz).
n#0

Here K, (y) is the K-Bessel function of order v, and

(Pn(s) — zﬂ.slnls—% 01—2s(|n|)

L(s)¢(2s)

where 0,,(|n|) is the sum of the vth powers of divisors of |n|, and ((s) is the
Riemann zeta function.

This work was partially supported by a Grant-Aid for General Scientific Research from
the Ministry of Education, Science and Culture.
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The Kloosterman sum is defined by

S(m,n,c) = Z e({ma +nd)/c), ad=1mode,
0<a,d<c

with non-zero integers m,n. We have the bound due to Weil:
|S(m’n’ C)l < (lml’ |n|’c)1/200(c)cl/2' (1)

‘We then have

The Kuznetsov trace formula Let m,n be non-zero integers. Let h(r) be
a function of a complezx variable r satisfying certain conditions. Then

S GE r)4 L [ pnd - indpn(h + i)

=i cosh(rr;) oo h(mrr)
~ Smn /00 r tanh(nr)h(r)dr
=5 |
= S(m,n,c)2i [ 1 h(r)
+ CZ_:I ————c—? /_Oo TM217(47T|mn| 2 /C)mdr, (2)

where M, stands for either J, or I, according as mn >0 or mn < 0.
The formula (2) was first established by Kuznetsov (5] (see (1], [4], [6] for
alternative proofs). He proved it for h(r) satisfying the condition:

) { h(r) is even and holomorphic in the strip {Im7| < % + ¢; and there

1
A(r)] < (1 +|r)) 722 as [r| — oo,

where € and é are arbitrary small positive constants.

We shall show that
Theorem The trace formula (2) holds if h(r) satisfies the condition:
(©2) { h(r) is even and holomorphic in the strip Imr| < i + &; and there
PR < (1 +1r) 728 asr| > oo,
where € and 6 are as above.

Remark Our argument gives, more precisely, that if we have S(m,n,c) <
cl=% for a certain &y > 0 then the width of the relevant strip can be taken to
be 1(1 — &) + . Thus the Weil estimate (1) gives our theorem. Also we see
that the condition (C1) corresponds to the trivial bound S(m,n,c) < c¢. The
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author foresees that this sort of correspondences should hold for any Fuchsian
groups of the first kind with cusps.

2. Basic identity In this section we state an intermediate trace formula
from which our theorem follows. We first introduce the Poincaré series P, and
the series F,, defined by Niebur [6](see also [2], [3]). Let I'x, be the stabilizer
subgroup in I' of the cusp at infinity. Then we have

Pn(z,8)= ) e 2mv0%y(yz)%e(ma(y2)),
'Yeroo\r

Fu(z,8)= Y. y(v2)*I,_s(2nimly(y2))e(ma(yz))

YET\T

with common abuse of notation. Both of them converge absolutely for Re (s) >
1. We note that P,, belongs to L>(I"'\'H) but F, does not.

The inner product (F,,(, s), P,(-,)) has no sense because the relevant in-
tegral is divergent. We can, however, mimic the procedure of taking the inner-
product of these series. To indicate it we invoke the relation:

s——+k:
Fiu(2, ) (4’”’”' i

r<s+2>z (29)s Fnos 4B

(see |9, Proposition 2]). This suggests that we should investigate, instead, the
expression

-1 w—% 21_28
m R i) W)
x|m|)s- 3tk
2(23 e (D2 s 4 £), Pl ). @)

Here, for an obvious reason, we are not able to exchange the order of the
summation over k and the integration involved in the inner-products. Thus
it is remarkable that the expression is indeed convergent, and the sum can be
expressed in a compact way.

To show this fact, we use on one side the spectral decomposition for each
of the inner-products; it converges uniformly for Re s, Rew > % On the other
side we use an expression for the inner-product which was recently obtained by
Motohashi [6, Lemma 9, 10, and 11]; it holds for Res, Rew > 3.

Then the computation of (3) readily reduces to verifying the relation

21—2s

——T(s— 2 +ir(s-L~-ir)F(s—- % +ir,s — 1 —ir;2s1
TG+ ) (s—3+inT(s—3 —ir)F(s— § +ir,s — 5 —ir;2s;1)

1

T2

T L
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where F' is the hypergeometric function. In this way we are led to our basic
identity:
Lemma For any non-zero integers m,n, and arbitrary complex numbers s, w
satisfying

%<Res, %<Rew<1,

we have
Smpn D)L (s + w — I(1 — w)
T r'l1+s—w)

S(m1 n, C) % [ 3 1
SRLLELY) weriruﬂmnl2/c>@<w’r>md’“

d m)d;(n)¥(w,r;)

+
VM M8

(s— 2)2+r

/_‘: om(3 —ir)en(z + i’"ﬂ’(%ﬂmdﬂ (4)

Ay

+

where Ma;-(y) is as in (2), and

¥(s,r) =T(s — 2 +ir)T(s — § —ir).

The condition Re w < 1 can not be removed. For otherwise the spectral sum
would not converge absolutely; here we need Kuznetsov’s spectral mean square
estimate of the Fourier coefficients d;(n):

> ldi(n)Pe™ < X2

0<r;<X

Obviously the formula (4) is a special case of the trace formula (2); we have

only to put
1

(s—3)2+r2

But the point is that this choice of h(r) is not included in the class induced by
(C1).

3. Proof of Theorem We put, in (4),

h(r) = cosh(nr)¥(w,r)

s=a—it, w=a+it (%+26<a<%+45,t€R),

with § = /4 (see (C2)). Then we shift the path in the integral on the left side
of (4) to Imr = — — §, which is to ensure absolute convergence. Let h(r) be a
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test function satisfying the condition (C2). We multiply the resulting identity
by the factor

. _3 g (1l —a—1it .
O(hs0;) = v (o~ =TI O il )
2

and integrate with respect to t over the real axis. The verification of abso-
lute convergence is immediate. After changing the order of the sums and the
integrals, we see that our problem is reduced to the evaluation of

h*(a,r) = /oo (o= % —it)2 +r®)" 10 (o + it,r)O(h; o, t)dt

- 00

with Im 7 = 0 or —4 — 6. Shifting the path to Im ¢ = [Im 7| + o + 6 — 1, we
get
h*(a,r) = h(r)/ cosh(nr) + hi(a, 1),

where h} is the integral over the new path. We have that hj(c,7) is regular
for Re & > 1(1 — 6), and moreover

o) < (L+ [rl)2emtemirl,
Thus by analytic continuation with respect to o we see that we may put o = %
in the integrated trace formula. This obviously ends the proof of the theorem,
since we have A}(;r) = 0.

There is another approach to the theorem. It depends on Fay’s functional
equation for the Kloosterman zeta function, and is a minor modification of the
argument developed in, e.g., Iwaniec [4, §9.3]. Suffice to say, we use the Weil
estimate in his procedure.

The functional equation in question was proved by using the properties of
the resolvent kernel (see {2], [3], and [4]). Concerning this, it is worth remarking
that it is also possible to derive the equation from the formula (4).

In addition to these proofs, recently Motohashi {7, Chap.2] obtained an
alternative proof of the theorem. His proof is based on his formula for the
inner-product (P, (-, 8), P,(-,w)) which we have mentioned prior to the lemma
in §2. His argument had been developed, independently from ours, in his
extension of Kuznetsov’s trace formulas to the three dimensional hyperbolic
space.

Acknowledgement The present article is an improved version of author’s
draft. The improvement was kindly shown to the author by the referee.
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